293 research outputs found

    A Direct Measurement of the Total Gas Column Density in Orion KL

    Get PDF
    The large number of high-J lines of C^(18)O available via the Herschel Space Observatory provide an unprecedented ability to model the total CO column density in hot cores. Using the emission from all the observed lines (up to J = 15-14), we sum the column densities in each individual level to obtain the total column after correcting for the population in the unobserved states. With additional knowledge of source size, V_(LSR), and line width, and both local thermodynamic equilibrium (LTE) and non-LTE modeling, we have determined the total C^(18)O column densities in the Extended Ridge, Outflow/Plateau, Compact Ridge, and Hot Core components of Orion KL to be 1.4 × 10^(16) cm^(–2), 3.5 × 10^(16) cm^(–2), 2.2 × 10^(16) cm^(–2), and 6.2 × 10^(16) cm^(–2), respectively. We also find that the C^(18)O/C^(17)O abundance ratio varies from 1.7 in the Outflow/Plateau, 2.3 in the Extended Ridge, 3.0 in the Hot Core, and to 4.1 in the Compact Ridge. This is in agreement with models in which regions with higher ultraviolet radiation fields selectively dissociate C^(17)O, although care must be taken when interpreting these numbers due to the size of the uncertainties in the C^(18)O/C^(17)O abundance ratio

    Herschel observations of deuterated water towards Sgr B2(M)

    Get PDF
    Observations of HDO are an important complement for studies of water, because they give strong constraints on the formation processes -- grain surfaces versus energetic process in the gas phase, e.g. in shocks. The HIFI observations of multiple transitions of HDO in Sgr~B2(M) presented here allow the determination of the HDO abundance throughout the envelope, which has not been possible before with ground-based observations only. The abundance structure has been modeled with the spherical Monte Carlo radiative transfer code RATRAN, which also takes radiative pumping by continuum emission from dust into account. The modeling reveals that the abundance of HDO rises steeply with temperature from a low abundance (2.5×10−112.5\times 10^{-11}) in the outer envelope at temperatures below 100~K through a medium abundance (1.5×10−91.5\times 10^{-9}) in the inner envelope/outer core, at temperatures between 100 and 200~K, and finally a high abundance (3.5×10−93.5\times 10^{-9}) at temperatures above 200~K in the hot core.Comment: A&A HIFI special issue, accepte
    • …
    corecore