871 research outputs found

    Role of Pathologists in Breast Cancer Units

    Get PDF

    Oligodendroglioma cells lack glutamine synthetase and are auxotrophic for glutamine, but do not depend on glutamine anaplerosis for growth

    Get PDF
    In cells derived from several types of cancer, a transcriptional program drives high consumption of glutamine (Gln), which is used for anaplerosis, leading to a metabolic addiction for the amino acid. Low or absent expression of Glutamine Synthetase (GS), the only enzyme that catalyzes de novo Gln synthesis, has been considered a marker of Gln-addicted cancers. In this study, two human cell lines derived from brain tumors with oligodendroglioma features, HOG and Hs683, have been shown to be GS-negative. Viability of both lines depends from extracellular Gln with EC of 0.175 ± 0.056 mM (Hs683) and 0.086 ± 0.043 mM (HOG), thus suggesting that small amounts of extracellular Gln are sufficient for OD cell growth. Gln starvation does not significantly affect the cell content of anaplerotic substrates, which, consistently, are not able to rescue cell growth, but causes hindrance of the Wnt/β-catenin pathway and protein synthesis attenuation, which is mitigated by transient GS expression. Gln transport inhibitors cause partial depletion of intracellular Gln and cell growth inhibition, but do not lower cell viability. Therefore, GS-negative human oligodendroglioma cells are Gln-auxotrophic but do not use the amino acid for anaplerosis and, hence, are not Gln addicted, exhibiting only limited Gln requirements for survival and growth

    Asparagine Synthetase in Cancer: Beyond Acute Lymphoblastic Leukemia

    Get PDF
    Asparagine Synthetase (ASNS) catalyzes the synthesis of the non-essential amino acid asparagine (Asn) from aspartate (Asp) and glutamine (Gln). ASNS expression is highly regulated at the transcriptional level, being induced by both the Amino Acid Response (AAR) and the Unfolded Protein Response (UPR) pathways. Lack of ASNS protein expression is a hallmark of Acute Lymphoblastic Leukemia (ALL) blasts, which, therefore, are auxotrophic for Asn. This peculiarity is the rationale for the use of bacterial L-Asparaginase (ASNase) for ALL therapy, the first example of anti-cancer treatment targeting a tumor-specific metabolic feature. Other hematological and solid cancers express low levels of ASNS and, therefore, should also be Asn auxotrophs and ASNase sensitive. Conversely, in the last few years, several reports indicate that in some cancer types ASNS is overexpressed, promoting cell proliferation, chemoresistance, and a metastatic behavior. However, enhanced ASNS activity may constitute a metabolic vulnerability in selected cancer models, suggesting a variable and tumor-specific role of the enzyme in cancer. Recent evidence indicates that, beyond its canonical role in protein synthesis, Asn may have additional regulatory functions. These observations prompt a re-appreciation of ASNS activity in the biology of normal and cancer tissues, with particular attention to the fueling of Asn exchange between cancer cells and the tumor microenvironment

    The ATRA-dependent overexpression of the glutamate transporter EAAC1 requires RARβ induction

    Get PDF
    AbstractThe mechanisms underlying trafficking and membrane targeting of EAAC1, the rodent counterpart of the human EAAT3 carrier for anionic amino acids, are well characterized. In contrast, much less is known on the regulation of Slc1a1, the gene that encodes for the transporter. We have recently found that all-trans retinoic acid (ATRA) stimulates EAAC1 expression and anionic amino acid transport in C6 rat glioma cells. We report here that the ATRA effect on EAAC1 activity was inhibited by the specific RAR antagonist LE540 and mimicked by Am80, a RAR agonist, but not by the RXR agonist HX630. Moreover, the ATRA-dependent induction of Slc1a1 mRNA required the synthesis of a protein intermediate and was not associated with changes in the messenger half-life. ATRA treatment induced the expression of both Rarb mRNA and RARβ protein several hours before the induction of Slc1a1, while the mRNA for RFX1, a transcription factor recently involved in Slc1a1 transcription, was unchanged. In addition, Rarb silencing markedly inhibited the ATRA-dependent increase of both Rarb and Slc1a1 mRNAs. We conclude that in C6 glioma cells the induction of Slc1a1 by ATRA requires the synthesis of RARβ, suggesting that the receptor is involved in the regulation of the transporter gene

    Preparation of human primary macrophages to study the polarization from monocyte-derived macrophages to pro- or anti-inflammatory macrophages at biomaterial interface in vitro

    Get PDF
    Background/purpose: Testing of dental materials when in contact with innate immune cells has been so far hindered by the lack of proper in vitro models. Human primary monocyte-derived macrophages (MDMs) would be an excellent option to this aim. However, the inability to detach them from the tissue culture plates contrast the possibility to culture them on biomaterials. The goal of the present work is to present and validate an innovative protocol to obtain MDMs from peripheral blood monocytes, and to reseed them in contact with biomaterials without altering their viability and phenotype. Materials and methods: We differentiated MDMs on ultra-low attachment tissue culture plastics and recovered them with specific detachment solution in order to be reseeded on a secondary substrate. Therefore, using biological assays (RT-PCR, Western blot, and immunofluorescence) we compared their phenotype to MDMs differentiated on standard culture plates. Results: Transferred MDMs keep their differentiated M0 resting state, as well as the ability to be polarized into M1 (pro-inflammatory) or M2 (anti-inflammatory) macrophages. Conclusion: These data provide the dental material research community the unprecedented possibility to investigate the immunomodulatory properties of biomaterials for dental application

    Cerium oxide nanoparticles rescue α-synuclein-induced toxicity in a yeast model of Parkinson’s disease

    Get PDF
    Over the last decades, cerium oxide nanoparticles (CeO2 NPs) have gained great interest due to their potential applications, mainly in the fields of agriculture and biomedicine. Promising effects of CeO2 NPs are recently shown in some neurodegenerative diseases, but the mechanism of action of these NPs in Parkinson’s disease (PD) remains to be investigated. This issue is addressed in the present study by using a yeast model based on the heterologous expression of the human α-synuclein (α-syn), the major component of Lewy bodies, which represent a neuropathological hallmark of PD. We observed that CeO2 NPs strongly reduce α-syn-induced toxicity in a dose-dependent manner. This effect is associated with the inhibition of cytoplasmic α-syn foci accumulation, resulting in plasma membrane localization of α-syn after NP treatment. Moreover, CeO2 NPs counteract the α-syn-induced mitochondrial dysfunction and decrease reactive oxygen species (ROS) production in yeast cells. In vitro binding assay using cell lysates showed that α-syn is adsorbed on the surface of CeO2 NPs, suggesting that these NPs may act as a strong inhibitor of α-syn toxicity not only acting as a radical scavenger, but through a direct interaction with α-syn in vivo

    The Expression of CD154 by Kaposi's Sarcoma Cells Mediates the Anti-Apoptotic and Migratory Effects of HIV-1-Tat Protein:

    Get PDF
    Kaposi's sarcoma (KS) is a malignancy associated to conditions of immune system impairment such as HIV-1 infection and post-transplantation therapy. Here we report that HIV-1-Tat protein, at concentrations well below those detected in AIDS patients, up-regulates the expression of both CD40 and CD154 on KS cells. This occurred also in the presence of vincristine, that at doses shown to induce apoptosis decreased the expression of both CD40 and CD154 on KS cells. The treatment with a soluble CD40-muIg fusion protein (CD40 fp) that prevents the binding of CD154 with cell surface CD40, as well as the transfection with a vector for soluble CD40 (KS sCD40), decreased the anti-apoptotic effect of Tat. Moreover, Tat-induced motility of KS cells was inhibited by soluble CD40 fp. Tat also enhanced the expression of intracellular proteins known to transduce signals triggered by CD40 engagement, in particular TRAF-3. Tat as well as soluble CD154 (sCD154) prevented vincristine-induced reduction of TRAF-3 in KS cells t..
    corecore