156 research outputs found

    COMET: a Lagrangian transport model for greenhouse gas emission estimation ? forward model technique and performance for methane

    No full text
    International audienceThe Lagrangian transport model COMET has been developed to evaluate emission estimates based on atmospheric concentration observations. This paper describes the model and its application in modelling the methane concentrations at the European stations Cabauw and Macehead. The COMET model captures in most cases both synoptic and diurnal variations of the concentrations as a function of time and in absolute size quite well. The explained variability by COMET of the mixed layer concentration for Cabauw varies from 50% to 84%; for all hourly observations in 2002 the explained variability is 71% with a RMSE of 112 ppb. The explained variability for Macehead is 48%. The most important model parameters were tested for their influence on model performance, but in general the model is not very sensitive to variations within acceptable limits. For a regionally and locally polluted continental site the COMET model shows only a small bias and a moderate random error, and therefore is considered to capture the influence of the sources on the concentration variations quite well. It is therefore concluded that inverse methods and more specifically the COMET model is suitable to be applied in deriving independent estimates of greenhouse gas emissions using Source-Receptor relationships

    The Prosocial Cyberball Game: Compensating for social exclusion and its associations with empathic concern and bullying in adolescents

    Get PDF
    In this study we examined prosocial compensating behavior towards socially excluded ingroup and outgroup members by using a ‘Prosocial Cyberball Game’ in 9–17 year old Dutch adolescents (N = 133). Results showed that adolescents compensated for the social exclusion of an unknown peer in a virtual ball tossing game, by tossing the ball more often to that player in compensation conditions compared to the fair play condition. The proportion of tosses towards the excluded player did not significantly differ as a function of the group status of that player. Although compensating behavior towards ingroup versus outgroup members did not differ, the underlying motivation for this behavior may vary. More empathic concern was associated with more prosocial tosses towards an ingroup member, while more self-reported bullying behavior was associated with less compensating behavior in the outgroup condition. These findings may have practical implications for programs intending to change bystander behavior in bullying situations

    Off-resonance saturation as an MRI method to quantify mineral- iron in the post-mortem brain

    Get PDF
    PURPOSE: To employ an off‐resonance saturation method to measure the mineral‐iron pool in the postmortem brain, which is an endogenous contrast agent that can give information on cellular iron status. METHODS: An off‐resonance saturation acquisition protocol was implemented on a 7 Tesla preclinical scanner, and the contrast maps were fitted to an established analytical model. The method was validated by correlation and Bland‐Altman analysis on a ferritin‐containing phantom. Mineral‐iron maps were obtained from postmortem tissue of patients with neurological diseases characterized by brain iron accumulation, that is, Alzheimer disease, Huntington disease, and aceruloplasminemia, and validated with histology. Transverse relaxation rate and magnetic susceptibility values were used for comparison. RESULTS: In postmortem tissue, the mineral‐iron contrast colocalizes with histological iron staining in all the cases. Iron concentrations obtained via the off‐resonance saturation method are in agreement with literature. CONCLUSIONS: Off‐resonance saturation is an effective way to detect iron in gray matter structures and partially mitigate for the presence of myelin. If a reference region with little iron is available in the tissue, the method can produce quantitative iron maps. This method is applicable in the study of diseases characterized by brain iron accumulation and can complement existing iron‐sensitive parametric methods

    Compartmental diffusion and microstructural properties of human brain gray and white matter studied with double diffusion encoding magnetic resonance spectroscopy of metabolites and water

    Get PDF
    Double diffusion encoding (DDE) of the water signal offers a unique ability to separate the effect of microscopic anisotropic diffusion in structural units of tissue from the overall macroscopic orientational distribution of cells. However, the specificity in detected microscopic anisotropy is limited as the signal is averaged over different cell types and across tissue compartments. Performing side-by-side water and metabolite DDE spectroscopic (DDES) experiments provides complementary measures from which intracellular and extracellular microscopic fractional anisotropies (μFA) and diffusivities can be estimated. Metabolites are largely confined to the intracellular space and therefore provide a benchmark for intracellular μFA and diffusivities of specific cell types. By contrast, water DDES measurements allow examination of the separate contributions to water μFA and diffusivity from the intra- and extracellular spaces, by using a wide range of b values to gradually eliminate the extracellular contribution. Here, we aimed to estimate tissue and compartment specific human brain microstructure by combining water and metabolites DDES experiments. We performed our DDES measurements in two brain regions that contain widely different amounts of white matter (WM) and gray matter (GM): parietal white matter (PWM) and occipital gray matter (OGM) in a total of 20 healthy volunteers at 7 Tesla. Metabolite DDES measurements were performed at b = 7199 s/mm2, while water DDES measurements were performed with a range of b values from 918 to 7199 s/mm2. The experimental framework we employed here resulted in a set of insights pertaining to the morphology of the intracellular and extracellular spaces in both gray and white matter. Results of the metabolite DDES experiments in both PWM and OGM suggest a highly anisotropic intracellular space within neurons and glia, with the possible exception of gray matter glia. The water μFA obtained from the DDES results at high b values in both regions converged with that of the metabolite DDES, suggesting that the signal from the extracellular space is indeed effectively suppressed at the highest b value. The μFA measured in the OGM significantly decreased at lower b values, suggesting a considerably lower anisotropy of the extracellular space in GM compared to WM. In PWM, the water μFA remained high even at the lowest b value, indicating a high degree of organization in the interstitial space in WM. Tortuosity values in the cytoplasm for water and tNAA, obtained with correlation analysis of microscopic parallel diffusivity with respect to GM/WM tissue fraction in the volume of interest, are remarkably similar for both molecules, while exhibiting a clear difference between gray and white matter, suggesting a more crowded cytoplasm and more complex cytomorphology of neuronal cell bodies and dendrites in GM than those found in long-range axons in WM

    Behavioral genetics of temperament and frontal asymmetry in early childhood

    Get PDF
    Temperament has been suggested to be influenced by genetic and environmental factors. The current study examined genetic shared environmental and unique environmental factors accounting for variation in Fear, Effortful Control (EC), and Frontal Asymmetry (FA) in 4- to 6-year-old children using bivariate behavioral genetic modeling. We included a total of 214 same-sex twin pairs: 127 monozygotic (MZ) and 87 dizygotic (DZ) pairs. FA was measured during a rest electroencephalogram (EEG) recording, and Fear and EC were measured using parent report. Results show that differences between twins were best explained by genetic factors (about a quarter of the variance) and unique environmental factors (about three quarters of the variance). However, the cross-trait, within-twin correlations were not significant, implying no overlapping genetic or environmental factors on Fear and EC or on Fear and FA. Future research should try to elucidate the large role of unique environmental factors in explaining variance in these temperament-related traits

    Proper weak-coupling approach to the periodic s-d(f) exchange model

    Full text link
    The periodic s-d(f) exchange model is characterized by a wide variety of interesting applications, a simple mathematical structure and a limited number of reliable approximations which take care of the quantum nature of the participating spins. We suggest the use of a projection-operator method for getting information perturbationally, which are not accessible via diagrammatic approaches. In this paper we present in particular results beyond perturbation theory, which are obtained such that almost all exactly known limiting cases are incorporated correctly. We discuss a variety of possible methods and evaluate their consequences for one-particle properties. These considerations serve as a guideline for a more effective approach to the model.Comment: 11 pages, 6 figures; accepted by Phys. Rev.

    The contribution of HPV18 to cervical cancer is underestimated using high-grade CIN as a measure of screening efficiency

    Get PDF
    In one geographical area, 14 high-risk human papillomavirus types in cervical intraepithelial neoplasia (CIN2/3; n=139) and cervical squamous cell carcinoma (SCC; n=84) were analysed. HPV18 was more prevalent in SCC than CIN2/3 (OR 9.8; 95% confidence interval: 2.5–39). Other high-risk types prevalences corresponded in CIN2/3 and SCC. Evaluations using CIN2/3 as a measure of efficiency underestimate the contribution of HPV18 to SCC

    Better than Expected or as Bad as You Thought? The Neurocognitive Development of Probabilistic Feedback Processing

    Get PDF
    Learning from feedback lies at the foundation of adaptive behavior. Two prior neuroimaging studies have suggested that there are qualitative differences in how children and adults use feedback by demonstrating that dorsolateral prefrontal cortex (DLPFC) and parietal cortex were more active after negative feedback for adults, but after positive feedback for children. In the current study we used functional magnetic resonance imaging (fMRI) to test whether this difference is related to valence or informative value of the feedback by examining neural responses to negative and positive feedback while applying probabilistic rules. In total, 67 healthy volunteers between ages 8 and 22 participated in the study (8–11 years, n = 18; 13–16 years, n = 27; 18–22 years, n = 22). Behavioral comparisons showed that all participants were able to learn probabilistic rules equally well. DLPFC and dorsal anterior cingulate cortex were more active in younger children following positive feedback and in adults following negative feedback, but only when exploring alternative rules, not when applying the most advantageous rules. These findings suggest that developmental differences in neural responses to feedback are not related to valence per se, but that there is an age-related change in processing learning signals with different informative value

    Interpolating self-energy of the infinite-dimensional Hubbard model: Modifying the iterative perturbation theory

    Full text link
    We develop an analytical expression for the self-energy of the infinite-dimensional Hubbard model that is correct in a number of different limits. The approach represents a generalization of the iterative perturbation theory to arbitrary fillings. In the weak-coupling regime perturbation theory to second order in the interaction U is recovered. The theory is exact in the atomic limit. The high-energy behavior of the self-energy up to order (1/E)**2 and thereby the first four moments of the spectral density are reproduced correctly. Referring to a standard strong-coupling moment method, we analyze the limit of strong U. Different modifications of the approach are discussed and tested by comparing with the results of an exact diagonalization study.Comment: LaTeX, 14 pages, 5 ps figures included, title changed, references updated, minor change

    High-risk HPV type-specific clearance rates in cervical screening

    Get PDF
    We assessed clearance rates of 14 high-risk human papillomavirus (hrHPV) types in hrHPV-positive women with normal cytology and borderline/mild dyskaryosis (BMD) in a population-based cervical screening cohort of 44 102 women. The 6-month hrHPV type-specific clearance rates, that is, clearance of the same type as detected at baseline, in women with normal and BMD smears were 43% (95% confidence interval (CI) 39–47) and 29% (95% CI 24–34), respectively. Corresponding 18-month clearance rates were markedly higher, namely 65% (95% CI 60–69) and 41% (95% CI 36–47), respectively. The lowest clearance rates in women with normal cytology were observed for HPV16, HPV18, HPV31, and HPV33. Significantly reduced 18-month clearance rates at a significance level of 1% were observed for HPV16 (49%, 95% CI 41–59) and HPV31 (50%, 95% CI 39–63) in women with normal cytology, and for HPV16 (19%, 95% CI 12–29) in women with BMD. Among women who did not clear hrHPV, women with HPV16 persistence displayed an increased detection rate of ⩾CIN3 (normal P<0.0001; BMD, P=0.005). The type-specific differences in clearance rates indicate the potential value of hrHPV genotyping in screening programs. Our data support close surveillance (i.e. referral directly, or within 6 months) of women with HPV16 and are inconclusive for surveillance of women with HPV18, HPV31, and HPV33. For the other hrHPV-positive women, it seems advisable to adopt a conservative management with a long waiting period, as hrHPV clearance is markedly higher after 18 months than after 6 months and the risk for ⩾CIN3 is low
    corecore