59 research outputs found

    The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis

    Get PDF
    Throughout development the Arabidopsis shoot apical meristem successively undergoes several major phase transitions such as the juvenile-to-adult and floral transitions until, finally, it will produce flowers instead of leaves and shoots. Members of the Arabidopsis SBP-box gene family of transcription factors have been implicated in promoting the floral transition in dependence of miR156 and, accordingly, transgenics constitutively over-expressing this microRNA are delayed in flowering. To elaborate their roles in Arabidopsis shoot development, we analysed two of the 11 miR156 regulated Arabidopsis SBP-box genes, i.e. the likely paralogous genes SPL9 and SPL15. Single and double mutant phenotype analysis showed these genes to act redundantly in controlling the juvenile-to-adult phase transition. In addition, their loss-of-function results in a shortened plastochron during vegetative growth, altered inflorescence architecture and enhanced branching. In these aspects, the double mutant partly phenocopies constitutive MIR156b over-expressing transgenic plants and thus a major contribution to the phenotype of these transgenics as a result of the repression of SPL9 and SPL15 is strongly suggested

    Expression of Ovine Herpesvirus -2 Encoded MicroRNAs in an Immortalised Bovine - Cell Line

    Get PDF
    Ovine herpesvirus-2 (OvHV-2) infects most sheep, where it establishes an asymptomatic, latent infection. Infection of susceptible hosts e.g. cattle and deer results in malignant catarrhal fever, a fatal lymphoproliferative disease characterised by uncontrolled lymphocyte proliferation and non MHC restricted cytotoxicity. The same cell populations are infected in both cattle and sheep but only in cattle does virus infection cause dysregulation of cell function leading to disease. The mechanism by which OvHV-2 induces this uncontrolled proliferation is unknown. A number of herpesviruses have been shown to encode microRNAs (miRNAs) that have roles in control of both viral and cellular gene expression. We hypothesised that OvHV-2 encodes miRNAs and that these play a role in pathogenesis. Analysis of massively parallel sequencing data from an OvHV-2 persistently-infected bovine lymphoid cell line (BJ1035) identified forty-five possible virus-encoded miRNAs. We previously confirmed the expression of eight OvHV-2 miRNAs by northern hybridization. In this study we used RT-PCR to confirm the expression of an additional twenty-seven OvHV-2-encoded miRNAs. All thirty-five OvHV-2 miRNAs are expressed from the same virus genome strand and the majority (30) are encoded in an approximately 9 kb region that contains no predicted virus open reading frames. Future identification of the cellular and virus targets of these miRNAs will inform our understanding of MCF pathogenesis
    corecore