2,614 research outputs found

    THREE YEARS OF THE TRANSPORTATION ACT

    Get PDF

    Power to Compel Physical Examination in Cases of Injury to Person

    Get PDF
    The modern trial is the outgrowth of years of development of the law of procedure. Formerly it seemed as if a court was an arena wherein a combatant was allowed to use almost any artifice to deceive his opponent and the judge. Indeed, so evil were the effects of this policy, that aid was sought from equity to correct them. Hence arose \u27\u27 bills of discovery, issued for the purpose of obtaining from an antagonist, testimony, the production of which, courts of law could not compel. More recently, however, it has become recognized that the object of a trial is to enforce exact justice between man and man, and to the establishing of this justice all minor considerations must yield. The equitable bill of discovery has been superseded in most of our States by statutes compelling a party to a suit to produce for his opponent whatever documents or like evidence he possesses which may be essential to the prosecution or defense of his opponent\u27s case

    Optoacoustic solitons in Bragg gratings

    Full text link
    Optical gap solitons, which exist due to a balance of nonlinearity and dispersion due to a Bragg grating, can couple to acoustic waves through electrostriction. This gives rise to a new species of ``gap-acoustic'' solitons (GASs), for which we find exact analytic solutions. The GAS consists of an optical pulse similar to the optical gap soliton, dressed by an accompanying phonon pulse. Close to the speed of sound, the phonon component is large. In subsonic (supersonic) solitons, the phonon pulse is a positive (negative) density variation. Coupling to the acoustic field damps the solitons' oscillatory instability, and gives rise to a distinct instability for supersonic solitons, which may make the GAS decelerate and change direction, ultimately making the soliton subsonic.Comment: 5 pages, 3 figure

    Habitat‐dependent occupancy and movement in a migrant songbird highlights the importance of mangroves and forested lagoons in Panama and Colombia

    Get PDF
    Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea‐level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species. Little is known about the ecology of nonterritorial species that may display more complex movement patterns within and among habitats of differing quality. In this study, we assess within‐season survival and movement at two spatio‐temporal scales of a nonterritorial overwintering bird, the prothonotary warbler (Protonotaria citrea), that depends on mangroves and tropical lowland forests. Specifically, we (a) estimated within‐patch survival and persistence over a six‐week period using radio‐tagged birds in central Panama and (b) modeled abundance and occupancy dynamics at survey points throughout eastern Panama and northern Colombia as the dry season progressed. We found that site persistence was highest in mangroves; however, the probability of survival did not differ among habitats. The probability of warbler occupancy increased with canopy cover, and wet habitats were least likely to experience local extinction as the dry season progressed. We also found that warbler abundance is highest in forests with the tallest canopies. This study is one of the first to demonstrate habitat‐dependent occupancy and movement in a nonterritorial overwintering migrant songbird, and our findings highlight the need to conserve intact, mature mangrove, and lowland forests

    SUSY Dark Matter in the Universe- Theoretical Direct Detection Rates

    Full text link
    Exotic dark matter together with the vacuum energy or cosmological constant seem to dominate in the Universe. An even higher density of such matter seems to be gravitationally trapped in the Galaxy. Thus its direct detection is central to particle physics and cosmology. Current supersymmetric models provide a natural dark matter candidate which is the lightest supersymmetric particle (LSP). Such models combined with fairly well understood physics like the quark substructure of the nucleon and the nuclear structure (form factor and/or spin response function), permit the evaluation of the event rate for LSP-nucleus elastic scattering. The thus obtained event rates are, however, very low or even undetectable. So it is imperative to exploit the modulation effect, i.e. the dependence of the event rate on the earth's annual motion. Also it is useful to consider the directional rate, i.e its dependence on the direction of the recoiling nucleus. In this paper we study such a modulation effect both in non directional and directional experiments. We calculate both the differential and the total rates using both isothermal, symmetric as well as only axially asymmetric, and non isothermal, due to caustic rings, velocity distributions. We find that in the symmetric case the modulation amplitude is small. The same is true for the case of caustic rings. The inclusion of asymmetry, with a realistic enhanced velocity dispersion in the galactocentric direction, yields an enhanced modulation effect, especially in directional experiments.Comment: 17 LATEX pages, 1 table and 6 ps figures include

    Diffusion and Home Range Parameters for Rodents: Peromyscus maniculatus in New Mexico

    Full text link
    We analyze data from a long term field project in New Mexico, consisting of repeated sessions of mark-recaptures of Peromyscus maniculatus (Rodentia: Muridae), the host and reservoir of Sin Nombre Virus (Bunyaviridae: Hantavirus). The displacements of the recaptured animals provide a means to study their movement from a statistical point of view. We extract two parameters from the data with the help of a simple model: the diffusion constant of the rodents, and the size of their home range. The short time behavior shows the motion to be approximately diffusive and the diffusion constant to be 470+/-50m^2/day. The long time behavior provides an estimation of the diameter of the rodent home ranges, with an average value of 100+/-25m. As in previous investigations directed at Zygodontomys brevicauda observations in Panama, we use a box model for home range estimation. We also use a harmonic model in the present investigation to study the sensitivity of the conclusions to the model used and find that both models lead to similar estimates.Comment: The published paper in Ecol. Complexity has an old version of Figure 6. Here we have put the correct version of Figure

    Sub MeV Particles Detection and Identification in the MUNU detector ((1)ISN, IN2P3/CNRS-UJF, Grenoble, France, (2)Institut de Physique, Neuch\^atel, Switzerland, (3) INFN, Padova Italy, (4) Physik-Institut, Z\"{u}rich, Switzerland)

    Full text link
    We report on the performance of a 1 m3^{3} TPC filled with CF4_{4} at 3 bar, immersed in liquid scintillator and viewed by photomultipliers. Particle detection, event identification and localization achieved by measuring both the current signal and the scintillation light are presented. Particular features of α\alpha particle detection are also discussed. Finally, the 54{54}Mn photopeak, reconstructed from the Compton scattering and recoil angle is shown.Comment: Latex, 19 pages, 20 figure

    Preliminary archaeoentomological analyses of permafrost-preserved cultural layers from the pre-contact Yup’ik Eskimo site of Nunalleq, Alaska : implications, potential and methodological considerations

    Get PDF
    Acknowledgements Site excavation and samples collection were conducted by archaeologists from the University of Aberdeen, with the help of archaeologists and student excavators from the University of Aberdeen University of Alaska Fairbanks and Bryn Mawr College, Kuskokwim Campus, College of Rural Alaska and residents of Quinhagak and Mekoryuk. This study is funded through AHRC grant to the project ‘Understanding Cultural Resilience and Climate Change on the Bering Sea through Yup’ik Ecological Knowledge, Lifeways, Learning and Archaeology’ to Rick Knecht, Kate Britton and Charlotta Hillderal (University of Aberdeen; AH/K006029/1). Thanks are due to Qanirtuuq Inc. and Quinhagak, Alaska for sampling permissions and to entomologists working at the CNC in Ottawa for allowing access to reference collections of beetles, lice and fleas. Yves Bousquet, Ales Smetana and Anthony E. Davies are specially acknowledged for their help with the identification of coleopteran specimens. Finally, we would also like to thank Scott Elias for useful comments on the original manuscript.Peer reviewedPublisher PD
    corecore