5,087 research outputs found

    Sphaleron Effects Near the Critical Temperature

    Full text link
    We discuss one-loop radiative corrections to the sphaleron-induced baryon number-violating transition rate near the electroweak phase transition in the standard model. We emphasize that in the case of a first-order transition a rearrangement of the loop expansion is required close to the transition temperature. The corresponding expansion parameter, the effective 3-dimensional gauge coupling approaches a finite λ\lambda dependent value at the critical temperature. The λ\lambda (Higgs mass) dependence of the 1-loop radiative corrections is discussed in the framework of the heat kernel method. Radiative corrections are small compared to the leading sphaleron contribution as long as the Higgs mass is small compared to the W mass. To 1-loop accuracy, there is no Higgs mass range compatible with experimental limits where washing-out of a B+L asymmetry could be avoided for the minimal standard model with one Higgs doublet.Comment: 17 pages, RevTeX, (4 figures in a separate uuencoded file), HD-THEP-93-23re

    Skyrmion Multi-Walls

    Full text link
    Skyrmion walls are topologically-nontrivial solutions of the Skyrme system which are periodic in two spatial directions. We report numerical investigations which show that solutions representing parallel multi-walls exist. The most stable configuration is that of the square NN-wall, which in the NN\to\infty limit becomes the cubically-symmetric Skyrme crystal. There is also a solution resembling parallel hexagonal walls, but this is less stable.Comment: 7 pages, 1 figur

    Trakhtenbrot's Theorem in Coq, A Constructive Approach to Finite Model Theory

    Get PDF
    We study finite first-order satisfiability (FSAT) in the constructive setting of dependent type theory. Employing synthetic accounts of enumerability and decidability, we give a full classification of FSAT depending on the first-order signature of non-logical symbols. On the one hand, our development focuses on Trakhtenbrot's theorem, stating that FSAT is undecidable as soon as the signature contains an at least binary relation symbol. Our proof proceeds by a many-one reduction chain starting from the Post correspondence problem. On the other hand, we establish the decidability of FSAT for monadic first-order logic, i.e. where the signature only contains at most unary function and relation symbols, as well as the enumerability of FSAT for arbitrary enumerable signatures. All our results are mechanised in the framework of a growing Coq library of synthetic undecidability proofs

    Measurement of the hadronic photon structure function F_{2}^{γ} at LEP2

    Get PDF
    The hadronic structure function of the photon F_{2}^{γ} (x, Q²) is measured as a function of Bjorken x and of the photon virtuality Q² using deep-inelastic scattering data taken by the OPAL detector at LEP at e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{γ} are extended to an average Q² of 〈Q²〉=780 GeV² using data in the kinematic range 0.15<x<0.98. The Q² evolution of F_{2}^{γ} is studied for 12.1<〈Q²〉<780 GeV² using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{γ} with F_{2}^{γ} (Q²)/α = (0.08±0.02⁺⁰·⁰⁵_₀.₀₃) + (0.13±0.01⁺⁰·⁰¹_₀.₀₁) lnQ², where Q² is in GeV², for the central x region 0.10–0.60. Several parameterisations of F_{2}^{γ} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data

    Measurement of the charm structure function F_{2,c)^{γ} of the photon at LEP

    Get PDF
    The production of charm quarks is studied in deep-inelastic electron–photon scattering using data recorded by the OPAL detector at LEP at nominal e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. The charm quarks have been identified by full reconstruction of charged D* mesons using their decays into D⁰π with the D⁰ observed in two decay modes with charged particle final states, Kπ and Kπππ. The cross-section σ^{D*} for production of charged D* in the reaction e⁺e⁻→e⁺e⁻D*Χ is measured in a restricted kinematical region using two bins in Bjorken x, 0.00140.1 the perturbative QCD calculation at next-to-leading order agrees perfectly with the measured cross-section. For x<0.1 the measured cross-section is 43.8±14.3±6.3±2.8 pb with a next-to-leading order prediction of 17.0⁺²·⁹_₂.₃ pb

    Measurement of triple gauge boson couplings from W⁺W⁻ production at LEP energies up to 189 GeV

    Get PDF
    A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb⁻¹. After combining with our previous measurements at centre-of-mass energies of 161–183 GeV we obtain κ = 0.97_{-0.16}^{+0.20}, g_{1}^{z} = 0.991_{-0.057}^{+0.060} and λ = -0.110_{-0.055}^{+0.058}, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their Standard Model values. These results are consistent with the Standard Model expectations

    Baseline variability in onshore near surface gases and implications for monitoring at CO2 storage sites

    Get PDF
    The measurement of gas concentrations and fluxes in the soil and atmosphere is a powerful tool for monitoring geological carbon capture and storage (CCS) sites because the analyses are made directly in the biosphere in which we live. These methods can be used to both find and accurately quantifying leaks, and are visible and tangible data for public and ecosystem safety. To be most reliable and accurate, however, the measurements must be interpreted in the context of natural variations in gas concentration and flux. Such baseline data vary both spatially and temporally due to natural processes, and a clear understanding of their values and distributions is critical for interpreting near-surface gas monitoring techniques. The best example is CO2 itself, as the production of this gas via soil respiration can create a wide range of concentrations and fluxes that must be separated from, and not confused with, CO2 that may leak towards the surface from a storage reservoir. The present article summarizes baseline studies performed by the authors at various sites having different climates and geological settings from both Europe and North America, with focus given to the range of values that can result from near surface processes and how different techniques or data processing approaches can be used to help distinguish a leakage signal from an anomalous, shallow biogenic signal

    Tests of model of color reconnection and a search for glueballs using gluon jets with a rapidity gap

    Full text link
    Gluon jets with a mean energy of 22 GeV and purity of 95% are selected from hadronic Z0 decay events produced in e+e- annihilations. A subsample of these jets is identified which exhibits a large gap in the rapidity distribution of particles within the jet. After imposing the requirement of a rapidity gap, the gluon jet purity is 86%. These jets are observed to demonstrate a high degree of sensitivity to the presence of color reconnection, i.e. higher order QCD processes affecting the underlying color structure. We use our data to test three QCD models which include a simulation of color reconnection: one in the Ariadne Monte Carlo, one in the Herwig Monte Carlo, and the other by Rathsman in the Pythia Monte Carlo. We find the Rathsman and Ariadne color reconnection models can describe our gluon jet measurements only if very large values are used for the cutoff parameters which serve to terminate the parton showers, and that the description of inclusive Z0 data is significantly degraded in this case. We conclude that color reconnection as implemented by these two models is disfavored. The signal from the Herwig color reconnection model is less clear and we do not obtain a definite conclusion concerning this model. In a separate study, we follow recent theoretical suggestions and search for glueball-like objects in the leading part of the gluon jets. No clear evidence is observed for these objects.Comment: 42 pages, 18 figure

    Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV

    Full text link
    Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.

    A novel application of Fiber Bragg Grating (FBG) sensors in MPGD

    Full text link
    We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste, Italy). arXiv admin note: text overlap with arXiv:1512.0848
    corecore