294 research outputs found

    Fine structure of "zero-mode" Landau levels in HgTe/HgCdTe quantum wells

    Full text link
    HgTe/HgCdTe quantum wells with the inverted band structure have been probed using far infrared magneto-spectroscopy. Realistic calculations of Landau level diagrams have been performed to identify the observed transitions. Investigations have been greatly focused on the magnetic field dependence of the peculiar pair of "zero-mode" Landau levels which characteristically split from the upper conduction and bottom valence bands, and merge under the applied magnetic field. The observed avoided crossing of these levels is tentatively attributed to the bulk inversion asymmetry of zinc blend compounds.Comment: 5 pages, 4 figure

    Dirac-screening stabilized surface-state transport in a topological insulator

    Get PDF
    We report magnetotransport studies on a gated strained HgTe device. This material is a threedimensional topological insulator and exclusively shows surface state transport. Remarkably, the Landau level dispersion and the accuracy of the Hall quantization remain unchanged over a wide density range (3×1011cm−2<n<1×1012cm−23 \times 10^{11} cm^{-2} < n < 1 \times 10^{12} cm^{-2}). This implies that even at large carrier densities the transport is surface state dominated, where bulk transport would have been expected to coexist already. Moreover, the density dependence of the Dirac-type quantum Hall effect allows to identify the contributions from the individual surfaces. A k⋅pk \cdot p model can describe the experiments, but only when assuming a steep band bending across the regions where the topological surface states are contained. This steep potential originates from the specific screening properties of Dirac systems and causes the gate voltage to influence the position of the Dirac points rather than that of the Fermi level.Comment: 12 pages 4 figure

    Surface state charge dynamics of a high-mobility three dimensional topological insulator

    Full text link
    We present a magneto-optical study of the three-dimensional topological insulator, strained HgTe using a technique which capitalizes on advantages of time-domain spectroscopy to amplify the signal from the surface states. This measurement delivers valuable and precise information regarding the surface state dispersion within <1 meV of the Fermi level. The technique is highly suitable for the pursuit of the topological magnetoelectric effect and axion electrodynamics.Comment: Published version, online Sept 23, 201

    Nonverbal behavior during standardized interviews in patients with schizophrenia spectrum disorders

    Get PDF
    Several studies have consistently shown that patients with schizophrenia or schizophrenia spectrum disorders (SSD) can be distinguished from normal controls on the basis of their nonverbal behavior during standardized interviews, with considerable interactions between negative symptoms and poor facial expressivity. However, most studies have examined unmedicated patients, and gender of both interviewer and interviewee has not been taken into account. In this study we assessed the nonverbal behavior of male and female patients with SSD who were receiving second-generation antipsychotic medication (SGA) using the Ethological Coding System for Interviews (Troisi, 1998). In addition, we used a novel 5-factor model of the Positive and Negative Symptom Scale (PANSS, van der Gaag et al., 2006) to correlate nonverbal behavior with standard psychopathology ratings. Our findings strongly resembled results of previous studies into nonverbal behavior of patients with SSD, despite differences in cultural backgrounds and gender of the interviewer. Negative symptoms were inversely correlated with several of the nonverbal behavioral dimensions. Medication dose did not correlate with any one of the behavioral or psychopathological measures. Patients with SSD make less use of their nonverbal behavioral repertoire compared with controls, independent of antipsychotic treatment. Culture-specific nonverbal expressivity seems to play an additional (minor) role in distinguishing patients from healthy controls

    Magneto-optics of massive Dirac fermions in bulk Bi2Se3

    Full text link
    We report on magneto-optical studies of Bi2Se3, a representative member of the 3D topological insulator family. Its electronic states in bulk are shown to be well described by a simple Dirac-type Hamiltonian for massive particles with only two parameters: the fundamental bandgap and the band velocity. In a magnetic field, this model implies a unique property - spin splitting equal to twice the cyclotron energy: Es = 2Ec. This explains the extensive magneto-transport studies concluding a fortuitous degeneracy of the spin and orbital split Landau levels in this material. The Es = 2Ec match differentiates the massive Dirac electrons in bulk Bi2Se3 from those in quantum electrodynamics, for which Es = Ec always holds.Comment: 5 pages, 3 figures and Supplementary materials, to be published in Physical Review Letter

    Spin-Hall effect and spin-Coulomb drag in doped semiconductors

    Full text link
    In this review, we describe in detail two important spin-transport phenomena: the extrinsic spin-Hall effect (coming from spin-orbit interactions between electrons and impurities) and the spin-Coulomb drag. The interplay of these two phenomena is analyzed. In particular, we discuss the influence of scattering between electrons with opposite spins on the spin current and the spin accumulation produced by the spin-Hall effect. Future challenges and open questions are briefly discussed.Comment: Topical revie

    Single valley Dirac fermions in zero-gap HgTe quantum wells

    Full text link
    Dirac fermions have been studied intensively in condensed matter physics in recent years. Many theoretical predictions critically depend on the number of valleys where the Dirac fermions are realized. In this work, we report the discovery of a two dimensional system with a single valley Dirac cone. We study the transport properties of HgTe quantum wells grown at the critical thickness separating between the topologically trivial and the quantum spin Hall phases. At high magnetic fields, the quantized Hall plateaus demonstrate the presence of a single valley Dirac point in this system. In addition, we clearly observe the linear dispersion of the zero mode spin levels. Also the conductivity at the Dirac point and its temperature dependence can be understood from single valley Dirac fermion physics.Comment: version 2: supplementary material adde
    • 

    corecore