814 research outputs found

    Wnt/beta-catenin/Tcf signaling: A critical pathway in gastrointestinal tumorigenesis

    Get PDF
    Cancers of the gastrointestinal tract, including the liver, bile ducts, and pancreas, constitute the largest group of malignant tumors. Colorectal cancer is one of the most common neoplastic diseases in Western countries and one of the leading causes of cancer-related deaths. Inactivation of the adenomatous polyposis coli (APC) tumor-suppressor gene during early adenoma formation is thought to be the first genetic event in the process of colorectal carcinogenesis followed by mutations in oncogenes like K-Ras and tumor-suppressor genes like p53. Identification of the interaction of APC with the proto-oncogene beta-catenin has linked colorectal carcinogenesis to the Wnt-signal transduction pathway. The main function of APC is thought to be the regulation of free beta-catenin in concert with the glycogen synthase kinase 3beta (GSK-3beta) and Axin proteins. Loss of APC function, inactivation of Axin or activating beta-catenin mutations result in the cellular accumulation of beta-catenin. Upon translocation to the nucleus beta-catenin serves as an activator of T-cell factor (Tcf)-dependent transcription leading to an increased expression of several specific target genes including c-Myc, cyclin D1, MMP-7, and ITF-2. While APC mutations are almost exclusively found in colorectal cancers, deregulation of Wnt/beta-catenin/Tcf signaling is also common in other gastrointestinal and extra-gastrointestinal human cancers. In a fraction of hepatocellular carcinomas the Writ pathway is deregulated by inactivation of Axin or stabilizing mutations of beta-catenin. The majority of hepatoblastomas and a group of gastric cancers also carry beta-catenin mutations. Clearly, this pathway harbors great potential for future applications in cancer diagnostics, staging, and therapy. Copyright (C) 2002 S. Karger AG, Basel

    Interpreting intraplate tectonics for seismic hazard : a UK historical perspective

    Get PDF
    It is notoriously difficult to construct seismic source models for probabilistic seismic hazard assessment in intraplate areas on the basis of geological information, and many practitioners have given up the task in favour of purely seismicity-based models. This risks losing potentially valuable information in regions where the earthquake catalogue is short compared to the seismic cycle. It is interesting to survey how attitudes to this issue have evolved over the past 30 years. This paper takes the UK as an example, and traces the evolution of seismic source models through generations of hazard studies. It is found that in the UK, while the earliest studies did not consider regional tectonics in any way, there has been a gradual evolution towards more tectonically based models. Experience in other countries, of course, may differ

    The putative Escherichia coli dehydrogenase YjhC metabolises two dehydrated forms of N-acetylneuraminate produced by some sialidases

    Get PDF
    Homologues of the putative dehydrogenase YjhC are found in operons involved in the metabolism of N-acetylneuraminate (Neu5Ac) or related compounds. We observed that purified recombinant YjhC forms Neu5Ac from two dehydrated forms of this compound, 2,7-anhydro-N-acetylneuraminate (2,7-AN) and 2-deoxy-2,3-didehydro-N-acetylneuraminate (2,3-EN) that are produced during the degradation of sialoconjugates by some sialidases. The conversion of 2,7-AN into Neu5Ac is reversible and reaches its equilibrium when the ratio of 2,7-AN to Neu5Ac is ≈1/6. The conversion of 2,3-EN is irreversible, leading to a mixture of Neu5Ac and 2,7-AN. NMR analysis of the reaction catalysed by YjhC on 2,3-EN indicated that Neu5Ac was produced as the α-anomer. All conversions require NAD+ as a cofactor, which is regenerated in the reaction. They appear to involve the formation of keto (presumably 4-keto) intermediates of 2,7-AN, 2,3-EN and Neu5Ac, which were detected by liquid chromatography-mass spectrometry (LC-MS). The proposed reaction mechanism is reminiscent of the one catalysed by family 4 ÎČ-glycosidases, which also use NAD+ as a cofactor. Both 2,7-AN and 2,3-EN support the growth of Escherichia coli provided the repressor NanR, which negatively controls the expression of the yjhBC operons, has been inactivated. Inactivation of either YjhC or YjhB in NanR-deficient cells prevents the growth on 2,7-AN and 2,3-EN. This confirms the role of YjhC in 2,7-AN and 2,3-EN metabolism and indicates that transport of 2,7-AN and 2,3-EN is carried out by YjhB, which is homologous to the Neu5Ac transporter NanT

    The metalloprotein YhcH is an anomerase providing N-acetylneuraminate aldolase with the open form of its substrate

    Get PDF
    N-acetylneuraminate (Neu5Ac), an abundant sugar present in glycans in vertebrates and some bacteria, can be used as an energy source by several prokaryotes, including Escherichia coli. In solution, more than 99% of Neu5Ac is in cyclic form (≈92% beta-anomer and ≈7% alpha-anomer), whereas <0.5% is in the open form. The aldolase that initiates Neu5Ac metabolism in E. coli, NanA, has been reported to act on the alphaanomer. Surprisingly, when we performed this reaction at pH 6 to minimize spontaneous anomerization, we found NanA and its human homolog NPL preferentially metabolize the open form of this substrate. We tested whether the E. coli Neu5Ac anomerase NanM could promote turnover, finding it stimulated the utilization of both beta and alpha-anomers by NanA in vitro. However, NanM is localized in the periplasmic space and cannot facilitate Neu5Ac metabolism by NanA in the cytoplasm in vivo. We discovered that YhcH, a cytoplasmic protein encoded by many Neu5Ac catabolic operons and belonging to a protein family of unknown function (DUF386), also facilitated Neu5Ac utilization by NanA and NPL and displayed Neu5Ac anomerase activity in vitro. YhcH contains Zn, and its accelerating effect on the aldolase reaction was inhibited by metal chelators. Remarkably, several transition metals accelerated Neu5Ac anomerization in the absence of enzyme. Experiments with E. coli mutants indicated that YhcH expression provides a selective advantage for growth on Neu5Ac. In conclusion, YhcH plays the unprecedented role of providing an aldolase with the preferred unstable open form of its substrate

    Hazard-consistent response spectra in the Region of Murcia (Southeast Spain): comparison to earthquake-resistant provisions

    Get PDF
    Hazard-consistent ground-motion characterisations of three representative sites located in the Region of Murcia (southeast Spain) are presented. This is the area where the last three damaging events in Spain occurred and there is a significant amount of data for comparing them with seismic hazard estimates and earthquake-resistant provisions. Results of a probabilistic seismic hazard analysis are used to derive uniform hazard spectra (UHS) for the 475-year return period, on rock and soil conditions. Hazard deaggregation shows that the largest hazard contributions are due to small, local events for short-period target motions and to moderate, more distant events for long-period target motions. For each target motion and site considered, the associated specific response spectra (SRS) are obtained. It is shown that the combination of two SRS, for short- and long-period ground motions respectively, provides a good approximation to the UHS at each site. The UHS are compared to design response spectra contained in current Spanish and European seismic codes for the 475-year return period. For the three sites analysed, only the Eurocode 8 (EC8) type 2 spectrum captures the basic shape of the UHS (and not the EC8 type 1, as could be expected a priori). An alternative response spectrum, anchored at short- and long-period accelerations, is tested, providing a close match to the UHS spectra at the three sites. Results underline the important contribution of the frequent, low-to-moderate earthquakes that characterize the seismicity of this area to seismic hazard (at the 475-year return period)

    A consensus research agenda for optimising nasal drug delivery

    Get PDF
    Nasal drug delivery has specific challenges which are distinct from oral inhalation, alongside which it is often considered. The next generation of nasal products will be required to deliver new classes of molecule, e.g. vaccines, biologics and drugs with action in the brain or sinuses, to local and systemic therapeutic targets. Innovations and new tools/knowledge are required to design products to deliver these therapeutic agents to the right target at the right time in the right patients. We report the outcomes of an expert meeting convened to consider gaps in knowledge and unmet research needs in terms of (i) formulation and devices, (ii) meaningful product characterization and modeling, (iii) opportunities to modify absorption and clearance. Important research questions were identified in the areas of device and formulation innovation, critical quality attributes for different nasal products, development of nasal casts for drug deposition studies, improved experimental models, the use of simulations and nasal delivery in special populations. We offer these questions as a stimulus to research and suggest that they might be addressed most effectively by collaborative research endeavors

    Liquefaction hazard of the Groningen region of the Netherlands due to induced seismicity

    Get PDF
    The operator of the Groningen gas field is leading an effort to quantify the seismic hazard and riskof the region due to induced earthquakes, includingoverseeing one of the most comprehensive liquefaction hazard studies performedgloballyto date. Due tothe unique characteristics of the seismic hazard and the geologic deposits in Groningen, efforts first focused on developing relationships for a Groningen-specific liquefaction triggering model. The liquefaction hazard was then assessedusing a Monte Carlo method, wherein a range of credibleevent scenarios were considered in computingliquefaction damage-potentialhazard curves. Thiseffort entailed the use of a regional stochastic seismic source model,ground motion prediction equation,site response model,and geologic model that were developed as part of the broader regional seismic hazardassessment.“No-to-Minor Surficial Liquefaction Manifestations”arepredicted for mostsites across the study areafor a 75-year return period. The only sites where “Moderate Surficial Liquefaction Manifestations” are predicted are in the town of Zandeweer, with only some of the sites in the townbeing predicted to experience this severityof liquefactionfor thisreturn period
    • 

    corecore