719 research outputs found

    Multiscale Analysis of Microvascular Blood Flow: A Multiscale Entropy Study of Laser Doppler Flowmetry Time Series

    Get PDF
    Processes regulating the cardiovascular system (CVS) are numerous. Each possesses several temporal scales. Their interactions lead to interdependences across multiple scales. For the CVS analysis, different multiscale studies have been proposed, mostly performed on heart rate variability signals (HRV) reflecting the central CVS; only few were dedicated to data from the peripheral CVS, such as laser Doppler flowmetry (LDF) signals. Very recently, a study implemented the first computation of multiscale entropy for LDF signals. A nonmonotonic evolution of multiscale entropy with two distinctive scales was reported, leading to a markedly different behavior from the one of HRV. Our goal herein is to confirm these results and to go forward in the investigations on origins of this behavior. For this purpose, 12 LDF signals recorded simultaneously on the two forearms of six healthy subjects are processed. This is performed before and after application of physiological scales-based filters aiming at isolating previously found frequency bands linked to physiological activities. The results obtained with signals recorded simultaneously on two different sites of each subject show a probable central origin for the nonmonotonic behavior. The filtering results lead to the suggestion that origins of the distinctive scales could be dominated by the cardiac activity

    Study of time reversibility/irreversibility of cardiovascular data: theoretical results and application to laser Doppler flowmetry and heart rate variability signals

    Get PDF
    Time irreversibility can be qualitatively defined as the degree of a signal for temporal asymmetry. Recently, a time irreversibility characterization method based on entropies of positive and negative increments has been proposed for experimental signals and applied to heart rate variability (HRV) data (central cardiovascular system (CVS)). The results led to interesting information as a time asymmetry index was found different for young subjects and elderly people or heart disease patients. Nevertheless, similar analyses have not yet been conducted on laser Doppler flowmetry (LDF) signals (peripheral CVS). We first propose to further investigate the above-mentioned characterization method. Then, LDF signals, LDF signals reduced to samples acquired during ECG R peaks (LDF_RECG signals) and HRV recorded simultaneously in healthy subjects are processed. Entropies of positive and negative increments for LDF signals show a nonmonotonic pattern: oscillations—more or less pronounced, depending on subjects—are found with a period matching the one of cardiac activity. However, such oscillations are not found with LDF_RECG nor with HRV. Moreover, the asymmetry index for LDF is markedly different from the ones of LDF_RECG and HRV. The cardiac activity may therefore play a dominant role in the time irreversibility properties of LDF signals

    Multifractal analysis of heart rate variability and laser Doppler flowmetry fluctuations:comparison of results from different numerical methods

    Get PDF
    To contribute to the understanding of the complex dynamics in the cardiovascular system (CVS), the central CVS has previously been analyzed through multifractal analyses of heart rate variability (HRV) signals that were shown to bring useful contributions. Similar approaches for the peripheral CVS through the analysis of laser Doppler flowmetry (LDF) signals are comparatively very recent. In this direction, we propose here a study of the peripheral CVS through a multifractal analysis of LDF fluctuations, together with a comparison of the results with those obtained on HRV fluctuations simultaneously recorded. To perform these investigations concerning the biophysics of the CVS, first we have to address the problem of selecting a suitable methodology for multifractal analysis, allowing us to extract meaningful interpretations on biophysical signals. For this purpose, we test four existing methodologies of multifractal analysis. We also present a comparison of their applicability and interpretability when implemented on both simulated multifractal signals of reference and on experimental signals from the CVS. One essential outcome of the study is that the multifractal properties observed from both the LDF fluctuations (peripheral CVS) and the HRV fluctuations (central CVS) appear very close and similar over the studied range of scales relevant to physiology

    Multiscale entropy of laser Doppler flowmetry signals in healthy human subjects

    Get PDF
    Purpose: The cardiovascular system (CVS) regulation can be studied from acentral viewpoint, through heart rate variability (HRV) data, and from a peripheral viewpoint, through laser Doppler flowmetry (LDF) signals. Both the central and peripheral CVSs are regulated by several interacting mechanisms, each having its own temporal scale. The central CVS has been the subject of many multiscale studies. By contrast, these studies at the level of the peripheral CVS are very recent. Among the multiscale studies performed on the central CVS data, multiscale entropy has been proven to give interesting physiological information for diagnostic purposes. However, no multiscale entropyanalysis has been performed on LDF signals. The authors’ goal is therefore to propose a first multiscale entropy study of LDF data recorded in healthy subjects. Methods: The LDF signals recorded in the forearm of seven healthy subjects are processed. Their period sampling is T = 50 ms , and coarse-graining scales from T to 23 T are studied. Also, for validation, the algorithm is first tested on synthetic signals of known theoretical multiscale entropy. Results: The results reveal nonmonotonic evolution of the multiscale entropy of LDF signals, with a maximum at small scales around 7 T and a minimum at longer scales around 18 T , singling out in this way two distinctive scales where the LDF signals undergo specific changes from high to low complexity. This also marks a strong contrast with the HRV signals that usually display a monotonic increase in the evolution of the multiscale entropy. Conclusions: Multiscale entropy of LDF signals in healthy subjects shows variation with scales. Moreover, as the variation pattern observed appears similar for all the tested signals, multiscale entropy could potentially be a useful stationary signature for LDF signals, which otherwise are probe-position and subject dependent. Further work could now be conducted to evaluate possible diagnostic purposes of the multiscale entropy of LDF signals

    Multifractal analysis of central (electrocardiography) and peripheral (laser Doppler flowmetry) cardiovascular time series from healthy human subjects

    Get PDF
    Analysis of the cardiovascular system (CVS) activity is important for several purposes, including better understanding of heart physiology, diagnosis and forecast of cardiac events. The central CVS, through the study of heart rate variability (HRV), has been shown to exhibit multifractal properties, possibly evolving with physiologic or pathologic states of the organism. An additional viewpoint on the CVS is provided at the peripheral level by laser Doppler flowmetry (LDF), which enables local blood perfusion monitoring. We report here for the first time a multifractal analysis of LDF signals through the computation of their multifractal spectra. The method for estimation of the multifractal spectra, based on the box method, is first described and tested on a priori known synthetic multifractal signals, before application to LDF data. Moreover, simultaneous recordings of both central HRV and peripheral LDF signals, and corresponding multifractal analyses, are performed to confront their properties. With the scales chosen on the partition functions to compute Renyi exponents, LDF signals appear to have broader multifractal spectra compared to HRV. Various conditions for LDF acquisitions are tested showing larger multifractal spectra for signals recorded on fingers than on forearms. The results uncover complex interactions at central and peripheral CVS levels

    3D multimodal simulation of image acquisition by X-Ray and MRI for validation of seedling measurements with segmentation algorithms

    Get PDF
    3D multimodal simulation of image acquisition by X-Ray and MRI for validation of seedling measurements with segmentation algorithms

    A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans

    Get PDF
    The need for more effective environmental monitoring of the open and coastal ocean has recently led to notable advances in satellite ocean color technology and algorithm research. Satellite ocean color sensors' data are widely used for the detection, mapping and monitoring of phytoplankton blooms because earth observation provides a synoptic view of the ocean, both spatially and temporally. Algal blooms are indicators of marine ecosystem health; thus, their monitoring is a key component of effective management of coastal and oceanic resources. Since the late 1970s, a wide variety of operational ocean color satellite sensors and algorithms have been developed. The comprehensive review presented in this article captures the details of the progress and discusses the advantages and limitations of the algorithms used with the multi-spectral ocean color sensors CZCS, SeaWiFS, MODIS and MERIS. Present challenges include overcoming the severe limitation of these algorithms in coastal waters and refining detection limits in various oceanic and coastal environments. To understand the spatio-temporal patterns of algal blooms and their triggering factors, it is essential to consider the possible effects of environmental parameters, such as water temperature, turbidity, solar radiation and bathymetry. Hence, this review will also discuss the use of statistical techniques and additional datasets derived from ecosystem models or other satellite sensors to characterize further the factors triggering or limiting the development of algal blooms in coastal and open ocean waters

    Incidence and severity of postoperative complications following oral, periodontal, and implant surgeries: A retrospective study

    Full text link
    Background: Incidence and severity of postoperative complications are key elements in determining the riskâ benefit relationship of any surgical procedure. The aim of this retrospective study was to assess and categorize the postoperative complications that occur following, and are associated with, oral, periodontal, and implant surgeries.Methods: A total of 3,900 patients who underwent surgical procedures including, but not limited to, sinus floor elevation, guided tissue regeneration, crown lengthening, implant placement, soft tissue graft, open flap debridement or surgical removal of impacted teeth were included. Postoperative complications were recorded and graded based on impedance to routine daily activity and favorable surgical outcomes. Regression models were generated to evaluate correlations between complication types, as well as between patient/surgical characteristics and the incidence of complications.Results: Surgical removal of impacted teeth and lateral sinus floor elevation had the highest incidence and severity of complications. Postoperative dentinal hypersensitivity (5.7%) was the most frequent complication, followed by excessive pain (4.1%), and moderate postoperative bleeding (3.5%). Based on the devised grading system described in this paper, the complications were 11.1% of Grade I, 3.3% of Grade II, 8.3% of Grade III, 0.1% of Grade IV, and no complications recorded under Grades V or VI.Conclusions: Surgical removal of impacted teeth and lateral sinus floor elevation are more prone to more severe complications compared with other procedures. Additionally, complications that do not impede favorable surgical outcomes and/or routine daily activity are the most likely to occur. Smoking and diabetes are generally associated with postoperative complications.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153087/1/jper10367.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153087/2/jper10367_am.pd
    corecore