218 research outputs found

    A perfect correlate does not a surrogate make

    Get PDF
    BACKGROUND: There is common belief among some medical researchers that if a potential surrogate endpoint is highly correlated with a true endpoint, then a positive (or negative) difference in potential surrogate endpoints between randomization groups would imply a positive (or negative) difference in unobserved true endpoints between randomization groups. We investigate this belief when the potential surrogate and unobserved true endpoints are perfectly correlated within each randomization group. METHODS: We use a graphical approach. The vertical axis is the unobserved true endpoint and the horizontal axis is the potential surrogate endpoint. Perfect correlation within each randomization group implies that, for each randomization group, potential surrogate and true endpoints are related by a straight line. In this scenario the investigator does not know the slopes or intercepts. We consider a plausible example where the slope of the line is higher for the experimental group than for the control group. RESULTS: In our example with unknown lines, a decrease in mean potential surrogate endpoints from control to experimental groups corresponds to an increase in mean true endpoint from control to experimental groups. Thus the potential surrogate endpoints give the wrong inference. Similar results hold for binary potential surrogate and true outcomes (although the notion of correlation does not apply). The potential surrogate endpointwould give the correct inference if either (i) the unknown lines for the two group coincided, which means that the distribution of true endpoint conditional on potential surrogate endpoint does not depend on treatment group, which is called the Prentice Criterion or (ii) if one could accurately predict the lines based on data from prior studies. CONCLUSION: Perfect correlation between potential surrogate and unobserved true outcomes within randomized groups does not guarantee correct inference based on a potential surrogate endpoint. Even in early phase trials, investigators should not base conclusions on potential surrogate endpoints in which the only validation is high correlation with the true endpoint within a group

    Neutrophil degranulation, NETosis and platelet degranulation pathway genes are co-induced in whole blood up to six months before tuberculosis diagnosis

    Get PDF
    Mycobacterium tuberculosis (M.tb) causes tuberculosis (TB) and remains one of the leading causes of mortality due to an infectious pathogen. Host immune responses have been implicated in driving the progression from infection to severe lung disease. We analyzed longitudinal RNA sequencing (RNAseq) data from the whole blood of 74 TB progressors whose samples were grouped into four six-month intervals preceding diagnosis (the GC6-74 study). We additionally analyzed RNAseq data from an independent cohort of 90 TB patients with positron emission tomography-computed tomography (PET-CT) scan results which were used to categorize them into groups with high and low levels of lung damage (the Catalysis TB Biomarker study). These groups were compared to non-TB controls to obtain a complete whole blood transcriptional profile for individuals spanning from early stages of M.tb infection to TB diagnosis. The results revealed a steady increase in the number of genes that were differentially expressed in progressors at time points closer to diagnosis with 278 genes at 13-18 months, 742 at 7-12 months and 5,131 detected 1-6 months before diagnosis and 9,205 detected in TB patients. A total of 2,144 differentially expressed genes were detected when comparing TB patients with high and low levels of lung damage. There was a large overlap in the genes upregulated in progressors 1-6 months before diagnosis (86%) with those in TB patients. A comprehensive pathway analysis revealed a potent activation of neutrophil and platelet mediated defenses including neutrophil and platelet degranulation, and NET formation at both time points. These pathways were also enriched in TB patients with high levels of lung damage compared to those with low. These findings suggest that neutrophils and platelets play a critical role in TB pathogenesis, and provide details of the timing of specific effector mechanisms that may contribute to TB lung pathology

    Personalization of prostate cancer prevention and therapy: are clinically qualified biomarkers in the horizon?

    Get PDF
    Prostate cancer remains the most common malignancy among men and the second leading cause of male cancer-related mortality. Death from this disease is invariably due to resistance to androgen deprivation therapy. Our improved understanding of the biology of prostate cancer has heralded a new era in molecular anticancer drug development, with multiple novel anticancer drugs for castration resistant prostate cancer now entering the clinic. These include the taxane cabazitaxel, the vaccine sipuleucel-T, the CYP17 inhibitor abiraterone, the novel androgen receptor antagonist MDV-3100 and the radionuclide alpharadin. The management and therapeutic landscape of prostate cancer has now been transformed with this growing armamentarium of effective antitumor agents. This review discusses strategies for the prevention and personalization of prostate cancer therapy, with a focus on the development of predictive and intermediate endpoint biomarkers, as well as novel clinical trial designs that will be crucial for the optimal development of such anticancer therapeutics

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    Optimising biomarkers for accurate ependymoma diagnosis, prognostication and stratification within International Clinical Trials: A BIOMECA study

    Get PDF
    BACKGROUND: Accurate identification of brain tumour molecular subgroups is increasingly important. We aimed to establish the most accurate and reproducible ependymoma subgroup biomarker detection techniques, across 147 cases from International Society of Pediatric Oncology (SIOP) Ependymoma II trial participants, enrolled in the pan-European "Biomarkers of Ependymoma in Children and Adolescents (BIOMECA)" study. METHODS: Across six European BIOMECA laboratories we evaluated epigenetic profiling (DNA methylation array); immunohistochemistry (IHC) for nuclear p65-RELA, H3K27me3, and Tenascin-C; copy number analysis via FISH and MLPA (1q, CDKN2A), and MIP and DNA methylation array (genome-wide copy number evaluation); analysis of ZFTA- and YAP1-fusions by RT-PCR and sequencing, Nanostring and break-apart FISH. RESULTS: DNA Methylation profiling classified 65.3% (n=96/147) of cases as EPN-PFA and 15% (n=22/147) as ST-ZFTA fusion-positive. Immunohistochemical loss of H3K27me3 was a reproducible and accurate surrogate marker for EPN-PFA (sensitivity 99-100% across three centres). IHC for p65-RELA, FISH, and RNA-based analyses effectively identified ZFTA- and YAP1- fused supratentorial ependymomas. Detection of 1q gain using FISH exhibited only 57% inter-centre concordance and low sensitivity and specificity whilst MIP, MLPA and DNA methylation-based approaches demonstrated greater accuracy. CONCLUSIONS: We confirm, in a prospective trial cohort, that H3K27me3 immunohistochemistry is a robust EPN-PFA biomarker. Tenascin-C should be abandoned as a PFA marker. DNA methylation and MIP arrays are effective tools for copy number analysis of 1q gain, 6q and CDKN2A loss whilst FISH is inadequate. Fusion detection was successful, but rare novel fusions need more extensive technologies. Finally, we propose test sets to guide future diagnostic approaches

    Revisiting the technical validation of tumour biomarker assays: how to open a Pandora's box

    Get PDF
    A tumour biomarker is a characteristic that is objectively measured and evaluated in tumour samples as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. The development of a biomarker contemplates distinct phases, including discovery by hypothesis-generating preclinical or exploratory studies, development and qualification of the assay for the identification of the biomarker in clinical samples, and validation of its clinical significance. Although guidelines for the development and validation of biomarkers are available, their implementation is challenging, owing to the diversity of biomarkers being developed. The term 'validation' undoubtedly has several meanings; however, in the context of biomarker research, a test may be considered valid if it is 'fit for purpose'. In the process of validation of a biomarker assay, a key point is the validation of the methodology. Here we discuss the challenges for the technical validation of immunohistochemical and gene expression assays to detect tumour biomarkers and provide suggestions of pragmatic solutions to address these challenges

    Surrogate endpoints for overall survival in digestive oncology trials: which candidates? A questionnaires survey among clinicians and methodologists

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overall survival (OS) is the gold standard for the demonstration of a clinical benefit in cancer trials. Replacement of OS by a surrogate endpoint allows to reduce trial duration. To date, few surrogate endpoints have been validated in digestive oncology. The aim of this study was to draw up an ordered list of potential surrogate endpoints for OS in digestive cancer trials, by way of a survey among clinicians and methodologists. Secondary objective was to obtain their opinion on surrogacy and quality of life (QoL).</p> <p>Methods</p> <p>In 2007 and 2008, self administered sequential questionnaires were sent to a panel of French clinicians and methodologists involved in the conduct of cancer clinical trials. In the first questionnaire, panellists were asked to choose the most important characteristics defining a surrogate among six proposals, to give advantages and drawbacks of the surrogates, and to answer questions about their validation and use. Then they had to suggest potential surrogate endpoints for OS in each of the following tumour sites: oesophagus, stomach, liver, pancreas, biliary tract, lymphoma, colon, rectum, and anus. They finally gave their opinion on QoL as surrogate endpoint. In the second questionnaire, they had to classify the previously proposed candidate surrogates from the most (position #1) to the least relevant in their opinion.</p> <p>Frequency at which the endpoints were chosen as first, second or third most relevant surrogates was calculated and served as final ranking.</p> <p>Results</p> <p>Response rate was 30% (24/80) in the first round and 20% (16/80) in the second one. Participants highlighted key points concerning surrogacy. In particular, they reminded that a surrogate endpoint is expected to predict clinical benefit in a well-defined therapeutic situation. Half of them thought it was not relevant to study QoL as surrogate for OS.</p> <p>DFS, in the neoadjuvant settings or early stages, and PFS, in the non operable or metastatic settings, were ranked first, with a frequency of more than 69% in 20 out of 22 settings. PFS was proposed in association with QoL in metastatic primary liver and stomach cancers (both 81%). This composite endpoint was ranked second in metastatic oesophageal (69%), colorectal (56%) and anal (56%) cancers, whereas QoL alone was also suggested in most metastatic situations.</p> <p>Other endpoints frequently suggested were R0 resection in the neoadjuvant settings (oesophagus (69%), stomach (56%), pancreas (75%) and biliary tract (63%)) and response. An unexpected endpoint was metastatic PFS in non operable oesophageal (31%) and pancreatic (44%) cancers. Quality and results of surgical procedures like sphincter preservation were also cited as eligible surrogate endpoints in rectal (19%) and anal (50% in case of localized disease) cancers. Except for alpha-FP kinetic in hepatocellular carcinoma (13%) and CA19-9 decline (6%) in pancreas, few endpoints based on biological or tumour markers were proposed.</p> <p>Conclusion</p> <p>The overall results should help prioritise the endpoints to be statistically evaluated as surrogate for OS, so that trialists and clinicians can rely on endpoints that ensure relevant clinical benefit to the patient.</p

    Accelerating Drug Development Using Biomarkers: A Case Study with Sitagliptin, A Novel DPP4 Inhibitor for Type 2 Diabetes

    Get PDF
    The leveraged use of biomarkers presents an opportunity in understanding target engagement and disease impact while accelerating drug development. For effective integration in drug development, it is essential for biomarkers to aid in the elucidation of mechanisms of action and disease progression. The recent years have witnessed significant progress in biomarker selection, validation, and qualification, while enabling surrogate and clinical endpoint qualification and application. Biomarkers play a central role in target validation for novel mechanisms. They also play a central role in the learning/confirming paradigm, particularly when utilized in concert with pharmacokinetic/pharmacodynamic modeling. Clearly, these attributes make biomarker integration attractive for scientific and regulatory applications to new drug development. In this review, applications of proximal, or target engagement, and distal, or disease-related, biomarkers are highlighted using the example of the recent development of sitagliptin for type 2 diabetes, wherein elucidation of target engagement and disease-related biomarkers significantly accelerated sitagliptin drug development. Importantly, use of biomarkers as tools facilitated design of clinical efficacy trials while streamlining dose focus and optimization, the net impact of which reduced overall cycle time to filing as compared to the industry average

    Is blood pressure reduction a valid surrogate endpoint for stroke prevention? an analysis incorporating a systematic review of randomised controlled trials, a by-trial weighted errors-in-variables regression, the surrogate threshold effect (STE) and the biomarker-surrogacy (BioSurrogate) evaluation schema (BSES)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood pressure is considered to be a leading example of a valid surrogate endpoint. The aims of this study were to (i) formally evaluate systolic and diastolic blood pressure reduction as a surrogate endpoint for stroke prevention and (ii) determine what blood pressure reduction would predict a stroke benefit.</p> <p>Methods</p> <p>We identified randomised trials of at least six months duration comparing any pharmacologic anti-hypertensive treatment to placebo or no treatment, and reporting baseline blood pressure, on-trial blood pressure, and fatal and non-fatal stroke. Trials with fewer than five strokes in at least one arm were excluded. Errors-in-variables weighted least squares regression modelled the reduction in stroke as a function of systolic blood pressure reduction and diastolic blood pressure reduction respectively. The lower 95% prediction band was used to determine the minimum systolic blood pressure and diastolic blood pressure difference, the surrogate threshold effect (STE), below which there would be no predicted stroke benefit. The STE was used to generate the surrogate threshold effect proportion (STEP), a surrogacy metric, which with the R-squared trial-level association was used to evaluate blood pressure as a surrogate endpoint for stroke using the Biomarker-Surrogacy Evaluation Schema (BSES3).</p> <p>Results</p> <p>In 18 qualifying trials representing all pharmacologic drug classes of antihypertensives, assuming a reliability coefficient of 0.9, the surrogate threshold effect for a stroke benefit was 7.1 mmHg for systolic blood pressure and 2.4 mmHg for diastolic blood pressure. The trial-level association was 0.41 and 0.64 and the STEP was 66% and 78% for systolic and diastolic blood pressure respectively. The STE and STEP were more robust to measurement error in the independent variable than R-squared trial-level associations. Using the BSES3, assuming a reliability coefficient of 0.9, systolic blood pressure was a B + grade and diastolic blood pressure was an A grade surrogate endpoint for stroke prevention. In comparison, using the same stroke data sets, no STEs could be estimated for cardiovascular (CV) mortality or all-cause mortality reduction, although the STE for CV mortality approached 25 mmHg for systolic blood pressure.</p> <p>Conclusions</p> <p>In this report we provide the first surrogate threshold effect (STE) values for systolic and diastolic blood pressure. We suggest the STEs have face and content validity, evidenced by the inclusivity of trial populations, subject populations and pharmacologic intervention populations in their calculation. We propose that the STE and STEP metrics offer another method of evaluating the evidence supporting surrogate endpoints. We demonstrate how surrogacy evaluations are strengthened if formally evaluated within specific-context evaluation frameworks using the Biomarker- Surrogate Evaluation Schema (BSES3), and we discuss the implications of our evaluation of blood pressure on other biomarkers and patient-reported instruments in relation to surrogacy metrics and trial design.</p
    corecore