1,587 research outputs found

    Lorentz Invariance Violation induced time delays in GRBs in different cosmological models

    Full text link
    Lorentz Invariance Violation (LIV) manifesting itself by energy dependent modification of standard relativistic dispersion relation has recently attracted a considerable attention. Ellis et al. previously investigated the energy dependent time offsets in different energy bands on a sample of gamma ray bursts and, assuming standard cosmological model, they found a weak indication for redshift dependence of time delays suggestive of LIV. Going beyond the Λ\LambdaCDM cosmology we extend this analysis considering also four alternative models of dark energy (quintessence with constant and variable equation of state, Chaplygin gas and brane-world cosmology). It turns out that the effect noticed by Ellis et al. is also present in those models and is the strongest for quintessence with variable equation of state.Comment: 14 pages, 1 figur

    Chaos in black holes surrounded by gravitational waves

    Get PDF
    The occurrence of chaos for test particles moving around Schwarzschild black holes perturbed by a special class of gravitational waves is studied in the context of the Melnikov method. The explicit integration of the equations of motion for the homoclinic orbit is used to reduce the application of this method to the study of simple graphics.Comment: 15 pages, LaTex

    Cosmological applications in Kaluza-Klein theory

    Full text link
    The field equations of Kaluza-Klein (KK) theory have been applied in the domain of cosmology. These equations are solved for a flat universe by taking the gravitational and the cosmological constants as a function of time t. We use Taylor's expansion of cosmological function, Λ(t)\Lambda(t), up to the first order of the time tt. The cosmological parameters are calculated and some cosmological problems are discussed.Comment: 14 pages Latex, 5 figures, one table. arXiv admin note: text overlap with arXiv:gr-qc/9805018 and arXiv:astro-ph/980526

    The tale of two centres

    Full text link
    We study motion in the field of two fixed centres described by a family of Einstein-dilaton-Maxwell theories. Transitions between regular and chaotic motion are observed as the dilaton coupling is varied.Comment: 20 pages, RevTeX, 7 figures included, TeX format change

    Group analysis of structure equations for stars in radiative and convective equilibrium

    Full text link
    It is proposed to use the Lie group theory of symmetries of differential equations to investigate the system of equations describing a static star in a radiative and convective equilibrium. It is shown that the action of an admissible group induces a certain algebraic structure in the set of all solutions, which can be used to find a family of new solutions. We have demonstrated that, in the most general case, the equations admit an infinite parameter group of quasi-homologous transformations. We have found invariants of the symmetries group which correspond to the fundamental relations describing a physical characteristic of the stars such as the Hertzsprung-Russell diagram or the mass-luminosity relation. In this way we can suggest that group invariants have not only purely mathematical sense, but their forms are closely associated with the basic empirical relations.Comment: LaTeX2e, 13page

    Chaos in Static Axisymmetric Spacetimes I : Vacuum Case

    Full text link
    We study the motion of test particle in static axisymmetric vacuum spacetimes and discuss two criteria for strong chaos to occur: (1) a local instability measured by the Weyl curvature, and (2) a tangle of a homoclinic orbit, which is closely related to an unstable periodic orbit in general relativity. We analyze several static axisymmetric spacetimes and find that the first criterion is a sufficient condition for chaos, at least qualitatively. Although some test particles which do not satisfy the first criterion show chaotic behavior in some spacetimes, these can be accounted for the second criterion.Comment: More comments for the quantitative estimation of chaos are added, and some inappropriate terms are changed. This will appear on Class. Quant. Gra

    Precision Measurement of the Weak Mixing Angle in Moller Scattering

    Get PDF
    We report on a precision measurement of the parity-violating asymmetry in fixed target electron-electron (Moller) scattering: A_PV = -131 +/- 14 (stat.) +/- 10 (syst.) parts per billion, leading to the determination of the weak mixing angle \sin^2\theta_W^eff = 0.2397 +/- 0.0010 (stat.) +/- 0.0008 (syst.), evaluated at Q^2 = 0.026 GeV^2. Combining this result with the measurements of \sin^2\theta_W^eff at the Z^0 pole, the running of the weak mixing angle is observed with over 6 sigma significance. The measurement sets constraints on new physics effects at the TeV scale.Comment: 4 pages, 2 postscript figues, submitted to Physical Review Letter

    Equation of state for Universe from similarity symmetries

    Full text link
    In this paper we proposed to use the group of analysis of symmetries of the dynamical system to describe the evolution of the Universe. This methods is used in searching for the unknown equation of state. It is shown that group of symmetries enforce the form of the equation of state for noninteracting scaling multifluids. We showed that symmetries give rise the equation of state in the form p=Λ+w1ρ(a)+w2aβ+0p=-\Lambda+w_{1}\rho(a)+w_{2}a^{\beta}+0 and energy density ρ=Λ+ρ01a3(1+w)+ρ02aβ+ρ03a3\rho=\Lambda+\rho_{01}a^{-3(1+w)}+\rho_{02}a^{\beta}+\rho_{03}a^{-3}, which is commonly used in cosmology. The FRW model filled with scaling fluid (called homological) is confronted with the observations of distant type Ia supernovae. We found the class of model parameters admissible by the statistical analysis of SNIa data. We showed that the model with scaling fluid fits well to supernovae data. We found that Ωm,00.4\Omega_{\text{m},0} \simeq 0.4 and n1n \simeq -1 (β=3n\beta = -3n), which can correspond to (hyper) phantom fluid, and to a high density universe. However if we assume prior that Ωm,0=0.3\Omega_{\text{m},0}=0.3 then the favoured model is close to concordance Λ\LambdaCDM model. Our results predict that in the considered model with scaling fluids distant type Ia supernovae should be brighter than in Λ\LambdaCDM model, while intermediate distant SNIa should be fainter than in Λ\LambdaCDM model. We also investigate whether the model with scaling fluid is actually preferred by data over Λ\LambdaCDM model. As a result we find from the Akaike model selection criterion prefers the model with noninteracting scaling fluid.Comment: accepted for publication versio
    corecore