1,216 research outputs found

    Conventional and manipulated growth of Cu-Cu(111)

    Get PDF
    Molecular beam epitaxy of Cu on Cu(111) was studied using thermal energy He scattering, in the temperature range between 100 and 450 K. Three-dimensional growth was observed in the whole temperature range. To determine the onset of various diffusion processes, submonolayer films formed by deposition at low temperature were annealed. Annealing proceeds in two steps. The first step is interpreted as a change in island shape, the second as Ostwald-ripening. A comparison with homoepitaxy on Pt(111) and Ag(111) is made. Growth manipulation was carried out by artificially increasing the island number density via intervention in the nucleation stage of each layer. The procedures applied were temperature reduction during nucleation as well as pulsed ion bombardment. These techniques enabled the convenient growth of good quality films consisting of a large number of monolayers. Finally, the use of oxygen as a surfactant modifying the growth mode was investigated. Under some growth conditions, pre-exposure of the surface to oxygen was found to induce weak He-intensity oscillations during deposition. The quality of the films grown in this way was, however, low

    Stationary Properties of a Randomly Driven Ising Ferromagnet

    Full text link
    We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics under the influence of a fast switching, random external field. Analytic results for the stationary state are presented in mean-field approximation, exhibiting a novel type of first order phase transition related to dynamic freezing. Monte Carlo simulations performed on a quadratic lattice indicate that many features of the mean field theory may survive the presence of fluctuations.Comment: 5 pages in RevTex format, 7 eps/ps figures, send comments to "mailto:[email protected]", submitted to PR

    Phase diagram of the random field Ising model on the Bethe lattice

    Get PDF
    The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, Ruiz and Zagrebnov [J. Stat. Phys. 93, 33 (1998)] an exact upper bound for the existence of a unique paramagnetic phase is found which considerably improves the earlier results. Several numerical estimates of transition lines between a ferromagnetic and a paramagnetic regime are presented. The obtained results do not coincide with a lower bound for the onset of ferromagnetism proposed by Bruinsma [Phys. Rev. B 30, 289 (1984)]. If the latter one proves correct this would hint to a region of coexistence of stable ferromagnetic phases and a stable paramagnetic phase.Comment: Article has been condensed and reorganized; Figs 3,5,6 merged; Fig 4 omitted; Some discussion added at end of Sec. III; 9 pages, 5 figs, RevTeX4, AMSTe

    A two-qubit Bell inequality for which POVM measurements are relevant

    Full text link
    A bipartite Bell inequality is derived which is maximally violated on the two-qubit state space if measurements describable by positive operator valued measure (POVM) elements are allowed rather than restricting the possible measurements to projective ones. In particular, the presented Bell inequality requires POVMs in order to be maximally violated by a maximally entangled two-qubit state. This answers a question raised by N. Gisin.Comment: 7 pages, 1 figur

    Manipulation of growth modes in heteroepitaxy: Ni-Cu(111)

    Get PDF
    Growth manipulation methods, which have been successfully used to improve the growth of homoepitaxialfilms, are applied to molecular beam epitaxy of the heteroepitaxial system Ni/Cu(111). The procedures applied are temperature reduction during nucleation and pulsed ion bombardment during deposition. While the first does not lead to smoother films, the ion beam assisted growth is successful in reducing the film roughness

    A New Method for Computing Topological Pressure

    Get PDF
    The topological pressure introduced by Ruelle and similar quantities describe dynamical multifractal properties of dynamical systems. These are important characteristics of mesoscopic systems in the classical regime. Original definition of these quantities are based on the symbolic description of the dynamics. It is hard or impossible to find symbolic description and generating partition to a general dynamical system, therefore these quantities are often not accessible for further studies. Here we present a new method by which the symbolic description can be omitted. We apply the method for a mixing and an intermittent system.Comment: 8 pages LaTeX with revtex.sty, the 4 postscript figures are included using psfig.tex to appear in PR

    The Cosmological Probability Density Function for Bianchi Class A Models in Quantum Supergravity

    Full text link
    Nicolai's theorem suggests a simple stochastic interpetation for supersymmetric Euclidean quantum theories, without requiring any inner product to be defined on the space of states. In order to apply this idea to supergravity, we first reduce to a one-dimensional theory with local supersymmetry by the imposition of homogeneity conditions. We then make the supersymmetry rigid by imposing gauge conditions, and quantise to obtain the evolution equation for a time-dependent wave function. Owing to the inclusion of a certain boundary term in the classical action, and a careful treatment of the initial conditions, the evolution equation has the form of a Fokker-Planck equation. Of particular interest is the static solution, as this satisfies all the standard quantum constraints. This is naturally interpreted as a cosmological probability density function, and is found to coincide with the square of the magnitude of the conventional wave function for the wormhole state.Comment: 22 pages, Late
    • …
    corecore