44 research outputs found

    Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles

    Full text link
    We dispersed electrochemical etched Si into a colloid of ultrabright blue luminescent nanoparticles (1 nm in diameter) and reconstituted it into films or microcrystallites. When the film is excited by a near-infrared two-photon process at 780 nm, the emission exhibits a sharp threshold near 106 W/cm2, rising by many orders of magnitude, beyond which a low power dependence sets in. Under some conditions, spontaneous recrystallization forms crystals of smooth shape from which we observe collimated beam emission, pointing to very large gain coefficients. The results are discussed in terms of population inversion, produced by quantum tunneling or/and thermal activation, and stimulated emission in the quantum confinement-engineered Si-Si phase found only on ultrasmall Si nanoparticles. The Si-Si phase model provides gain coefficients as large as 103-105 cm-1. © 2001 American Institute of Physics

    Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles

    Full text link
    We dispersed crystalline Si into a colloid of ultrasmall nano particles (∼1 nm), and reconstituted it into microcrystallites films on device-quality Si. The film is excited by near-infrared femtosecond two-photon process in the range 765-835 nm, with incident average power in the range 15-70 mW, focused to ∼1 μm. We have observed strong radiation at half the wavelength of the incident beam. The results are analyzed in terms of second-harmonic generation, a process that is not allowed in silicon due to the centrosymmetry. Ionic vibration of or/and excitonic self-trapping on novel radiative Si-Si dimer phase, found only in ultrasmall nanoparticles, are suggested as a basic mechanism for inducing anharmonicity that breaks the centrosymmetry. © 2000 American Institute of Physics
    corecore