Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles

Abstract

We dispersed crystalline Si into a colloid of ultrasmall nano particles (∼1 nm), and reconstituted it into microcrystallites films on device-quality Si. The film is excited by near-infrared femtosecond two-photon process in the range 765-835 nm, with incident average power in the range 15-70 mW, focused to ∼1 μm. We have observed strong radiation at half the wavelength of the incident beam. The results are analyzed in terms of second-harmonic generation, a process that is not allowed in silicon due to the centrosymmetry. Ionic vibration of or/and excitonic self-trapping on novel radiative Si-Si dimer phase, found only in ultrasmall nanoparticles, are suggested as a basic mechanism for inducing anharmonicity that breaks the centrosymmetry. © 2000 American Institute of Physics

    Similar works