CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Second harmonic generation in microcrystallite films of ultrasmall Si nanoparticles
Authors
O Akcakir
N Barry
+4 more
G Belomoin
E Gratton
MH Nayfeh
J Therrien
Publication date
18 December 2000
Publisher
eScholarship, University of California
Abstract
We dispersed crystalline Si into a colloid of ultrasmall nano particles (∼1 nm), and reconstituted it into microcrystallites films on device-quality Si. The film is excited by near-infrared femtosecond two-photon process in the range 765-835 nm, with incident average power in the range 15-70 mW, focused to ∼1 μm. We have observed strong radiation at half the wavelength of the incident beam. The results are analyzed in terms of second-harmonic generation, a process that is not allowed in silicon due to the centrosymmetry. Ionic vibration of or/and excitonic self-trapping on novel radiative Si-Si dimer phase, found only in ultrasmall nanoparticles, are suggested as a basic mechanism for inducing anharmonicity that breaks the centrosymmetry. © 2000 American Institute of Physics
Similar works
Full text
Available Versions
Sustaining member
eScholarship - University of California
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:escholarship.org:ark:/1303...
Last time updated on 25/12/2021