411 research outputs found

    The influence of the Earth's magnetosphere on the high-energy solar protons

    Get PDF
    In the Earth's polar regions the intensity of the solar protons with the energy above the critical energy of geomagnetic cutoff is the same as in the interplanetary space. The penumbra in the polar regions is small and the East-West effect is also small. However the geomagnetic cutoff rigidity R sub c in polar regions is difficult to calculate because it is not sufficient to include only the internal sources of the geomagnetic field. During the magneto-quiescent periods the real value of R sub c can be less by 0.1 GV than the calculated value because of the external sources. During the geomagnetic storms the real value of R sub c is still lower

    Analysis of cosmic ray variations observed by the CARPET in association with solar flares in 2011-2012

    Get PDF
    The CARPET cosmic ray detector was installed on April 2006 at CASLEO (Complejo Astronmico El Leoncito) at the Argentinean Andes (31.8S, 69.3W, 2550 m, Rc=9.65 GV). This instrument was developed within an international cooperation between the Lebedev Physical Institute RAS (LPI; Russia), the Centro de Radio Astronomia e Astrofsica Mackenzie (CRAAM; Brazil) and the Complejo Astronmico el Leoncito (CASLEO; Argentina). In this paper we present results of analysis of cosmic ray variations recorded by the CARPET during increased solar flare activity in 2011-2012. Available solar and interplanetary medium observational data obtained onboard GOES, FERMI, ISS, as well as cosmic ray measurements by ground-based neutron monitor network were also used in the present analysis.Fil: Makhmutov, V.. Lebedev Physical Institute; Rusia. Universidade Presbiteriana Mackenzie; BrasilFil: Raulin, J. P.. Universidade Presbiteriana Mackenzie; BrasilFil: De Mendonca, R. R. S.. National Institute for Space Research; BrasilFil: Bazilevskaya, G. A.. Lebedev Physical Institute; RusiaFil: Correia, E.. Universidade Presbiteriana Mackenzie; Brasil. National Institute for Space Research; BrasilFil: Kaufmann, Pierre. Universidade Presbiteriana Mackenzie; BrasilFil: Marun, Adolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Fernandez, German Enzo Leonel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Echer, E.. National Institute for Space Research; Brasi

    Latitudinal dependence of low cloud amount on cosmic ray induced ionization

    Full text link
    A significant correlation between the annual cosmic ray flux and the amount of low clouds has recently been found for the past 20 years. However, of the physical explanations suggested, none has been quantitatively verified in the atmosphere by a combination of modelling and experiment. Here we study the relation between the global distributions of the observed low cloud amount and the calculated tropospheric ionization induced by cosmic rays. We find that the time evolution of the low cloud amount can be decomposed into a long-term trend and inter-annual variations, the latter depicting a clear 11-year cycle. We also find that the relative inter-annual variability in low cloud amount increases polewards and exhibits a highly significant one-to-one relation with inter-annual variations in the ionization over the latitude range 20--55^\circS and 10--70^\circN. This latitudinal dependence gives strong support for the hypothesis that the cosmic ray induced ionization modulates cloud properties.Comment: GRL, in pres

    On the correlation between cosmic ray intensity and cloud cover

    Full text link
    Various aspects of the connection between cloud cover (CC) and cosmic rays (CR) are analysed. Many features of this connection indicate that there is no direct causal connection between low cloud cover (LCC) and CR in spite of the evident long-term correlation between them. However, most of these features are indirect. If only some part of the LCC is connected and varies with CR, then its value, obtained from the joint analysis of their 11-year variations, and averaged over the globe, should be most likely less than 20%. The most significant argument against a causal connection of CR and LCC is the anticorrelation between LCC and the medium cloud cover (MCC). The scenario of the parallel influence of the solar activity on the global temperature and CC on one side and CR on the other, which can lead to the observed correlations, is discussed and advocated.Comment: 30 pages, 10 figures, accepted for publication in Journal of Atmospheric and Solar-Terrestrial Physics, acknowledgements replace

    Ionization in the atmosphere, comparison between measurements and simulations

    Full text link
    A survey of the data on measured particle fluxes and the rate of ionization in the atmosphere is presented. Measurements as a function of altitude, time and cut-off rigidity are compared with simulations of particle production from cosmic rays. The simulations generally give a reasonable representation of the data. However, some discrepancies are found. The solar modulation of the particle fluxes is measured and found to be a factor 2.7±\pm0.8 greater than that observed for muons alone near sea level.Comment: Accepted for publication in Astrophysics and Space Science Transactions. Typographical errors fixe
    corecore