280 research outputs found

    Worldline approach to vector and antisymmetric tensor fields

    Full text link
    The N=2 spinning particle action describes the propagation of antisymmetric tensor fields, including vector fields as a special case. In this paper we study the path integral quantization on a one-dimensional torus of the N=2 spinning particle coupled to spacetime gravity. The action has a local N=2 worldline supersymmetry with a gauged U(1) symmetry that includes a Chern-Simons coupling. Its quantization on the torus produces the one-loop effective action for a single antisymmetric tensor. We use this worldline representation to calculate the first few Seeley-DeWitt coefficients for antisymmetric tensor fields of arbitrary rank in arbitrary dimensions. As side results we obtain the correct trace anomaly of a spin 1 particle in four dimensions as well as exact duality relations between differential form gauge fields. This approach yields a drastic simplification over standard heat-kernel methods. It contains on top of the usual proper time a new modular parameter implementing the reduction to a single tensor field. Worldline methods are generically simpler and more efficient in perturbative computations then standard QFT Feynman rules. This is particularly evident when the coupling to gravity is considered.Comment: 30 pages, 5 figures, references adde

    Higher spin fields from a worldline perspective

    Get PDF
    Higher spin fields in four dimensions, and more generally conformal fields in arbitrary dimensions, can be described by spinning particle models with a gauged SO(N) extended supergravity on the worldline. We consider here the one-loop quantization of these models by studying the corresponding partition function on the one-dimensional torus. After gauge fixing the supergravity multiplet, the partition function reduces to an integral over the corresponding moduli space which is computed using orthogonal polynomial techniques. We obtain a compact formula which gives the number of physical degrees of freedom for all N in all dimensions. As an aside we compute the physical degrees of freedom of the SO(4) = SU(2)xSU(2) model with only a SU(2) factor gauged, which has attracted some interest in the literature.Comment: 21 page

    Scalar Field with Robin Boundary Conditions in the Worldline Formalism

    Full text link
    The worldline formalism has been widely used to compute physical quantities in quantum field theory. However, applications of this formalism to quantum fields in the presence of boundaries have been studied only recently. In this article we show how to compute in the worldline approach the heat kernel expansion for a scalar field with boundary conditions of Robin type. In order to describe how this mechanism works, we compute the contributions due to the boundary conditions to the coefficients A_1, A_{3/2} and A_2 of the heat kernel expansion of a scalar field on the positive real line.Comment: Presented at 8th Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 07), Leipzig, Germany, 16-21 Sep 200

    Effective action for Einstein-Maxwell theory at order RF**4

    Full text link
    We use a recently derived integral representation of the one-loop effective action in Einstein-Maxwell theory for an explicit calculation of the part of the effective action containing the information on the low energy limit of the five-point amplitudes involving one graviton, four photons and either a scalar or spinor loop. All available identities are used to get the result into a relatively compact form.Comment: 13 pages, no figure

    Consistency conditions and trace anomalies in six dimensions

    Full text link
    Conformally invariant quantum field theories develop trace anomalies when defined on curved backgrounds. We study again the problem of identifying all possible trace anomalies in d=6 by studying the consistency conditions to derive their 10 independent solutions. It is known that only 4 of these solutions represent true anomalies, classified as one type A anomaly, given by the topological Euler density, and three type B anomalies, made up by three independent Weyl invariants. However, we also present the explicit expressions of the remaining 6 trivial anomalies, namely those that can be obtained by the Weyl variation of local functionals. The knowledge of the latter is in general necessary to disentangle the universal coefficients of the type A and B anomalies from calculations performed on concrete models.Comment: 16 pages, LaTe

    Photon-graviton mixing in an electromagnetic field

    Full text link
    Einstein-Maxwell theory implies the mixing of photons with gravitons in an external electromagnetic field. This process and its possible observable consequences have been studied at tree level for many years. We use the worldline formalism for obtaining an exact integral representation for the one-loop corrections to this amplitude due to scalars and fermions. We study the structure of this amplitude, and obtain exact expressions for various limiting cases.Comment: 13 pages, 1 figure, talk given by C. Schubert at QFEXT07, Leipzig, 17-21 Sep 2007, final published version (slightly extended

    The Hydrodynamics of M-Theory

    Full text link
    We consider the low energy limit of a stack of N M-branes at finite temperature. In this limit, the M-branes are well described, via the AdS/CFT correspondence, in terms of classical solutions to the eleven dimensional supergravity equations of motion. We calculate Minkowski space two-point functions on these M-branes in the long-distance, low-frequency limit, i.e. the hydrodynamic limit, using the prescription of Son and Starinets [hep-th/0205051]. From these Green's functions for the R-currents and for components of the stress-energy tensor, we extract two kinds of diffusion constant and a viscosity. The N dependence of these physical quantities may help lead to a better understanding of M-branes.Comment: 1+19 pages, references added, section 5 clarified, eq. (72) correcte

    Worldline approach to quantum field theories on flat manifolds with boundaries

    Get PDF
    We study a worldline approach to quantum field theories on flat manifolds with boundaries. We consider the concrete case of a scalar field propagating on R_+ x R^{D-1} which leads us to study the associated heat kernel through a one dimensional (worldline) path integral. To calculate the latter we map it onto an auxiliary path integral on the full R^D using an image charge. The main technical difficulty lies in the fact that a smooth potential on R_+ x R^{D-1} extends to a potential which generically fails to be smooth on R^D. This implies that standard perturbative methods fail and must be improved. We propose a method to deal with this situation. As a result we recover the known heat kernel coefficients on a flat manifold with geodesic boundary, and compute two additional ones, A_3 and A_{7/2}. The calculation becomes sensibly harder as the perturbative order increases, and we are able to identify the complete A_{7/2} with the help of a suitable toy model. Our findings show that the worldline approach is viable on manifolds with boundaries. Certainly, it would be desirable to improve our method of implementing the worldline approach to further simplify the perturbative calculations that arise in the presence of non-smooth potentials.Comment: 19 pages, 6 figures. Minor rephrasing of a few sentences, references added. Version accepted by JHE

    Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models

    Get PDF
    We make use of O(2r+1) spinning particle models to construct linearized higher-spin curvatures in (A)dS spaces for fields of arbitrary half-integer spin propagating in a space of arbitrary (even) dimension: the field potentials, whose curvatures are computed with the present models, are spinor-tensors of mixed symmetry corresponding to Young tableaux with D/2 - 1 rows and r columns, thus reducing to totally symmetric spinor-tensors in four dimensions. The paper generalizes similar results obtained in the context of integer spins in (A)dS.Comment: 1+18 pages; minor changes in the notation, references updated. Published versio

    Photon-Graviton Amplitudes from the Effective Action

    Full text link
    We report on the status of an ongoing effort to calculate the complete one-loop low-energy effective actions in Einstein-Maxwell theory with a massive scalar or spinor loop, and to use them for obtaining the explicit form of the corresponding M-graviton/N-photon amplitudes. We present explicit results for the effective actions at the one-graviton four-photon level, and for the amplitudes at the one-graviton two-photon level. As expected on general grounds, these amplitudes relate in a simple way to the corresponding four-photon amplitudes. We also derive the gravitational Ward identity for the 1PI one-graviton -- N photon amplitude.Comment: 9 pages, 2 figures, talk given by C. Schubert at "Supersymmetries and Quantum Symmetries - SQS`2011", JINR Dubna, July 18 - 23, 2011 (to appear in the Proceedings
    • …
    corecore