266 research outputs found

    Surgeons’ Knowledge Regarding Perioperative Pain Management in Patients With Opioid Use Disorder: A Survey Among 260 Members of the American College of Surgeons

    Get PDF
    BACKGROUND: Patients with opioid use disorder (OUD) are increasing, challenging surgeons to adjust post-operative pain management guidelines. A literature review identified limited information on how to best care for these patients. The purpose of this study was to determine surgical perioperative management of OUD, challenges, and support needed for optimal care. METHODS: This study utilized an anonymous voluntary survey that was distributed to members of the American College of Surgeons through the association\u27s electronic weekly newsletter. The survey was advertised weekly for three consecutive weeks. The survey included questions regarding surgeons\u27 management of perioperative pain in patients with opioid use disorder and perceived barriers in treatment. RESULTS: A total of 260 surgeons responded representing all specialties except ophthalmology. General surgery (66.5%) and plastic and reconstructive surgery (7.5%) represented the majority of responders. Ninety-five percent of surgeons reported treating a patient who used opioids in the past month and 86% encountered a patient with OUD. Nearly half (46%) reported being uncomfortable managing postoperative pain in patients with OUD. Most (67%) were not aware of any guidelines or standards pertaining to perioperative management of patients with OUD. While consultation was sought by 86% of surgeons, analyses identified lack of timely response and a lack of care coordination among specialists. Lack of knowledge and fear of harm (contributing further to addiction) were the most common themes. CONCLUSION: Nearly half of surgeons report discomfort caring for patients with OUD with the vast majority involving a consulting service to assist with their care. Most surgeons believe that it would be helpful to have guidelines regarding the care of these patients. This provides an opportunity for increased education and training on the perioperative management of patients with OUD and further collaboration with addiction medicine, psychiatry and pain management colleagues

    Persistent Homology Over Directed Acyclic Graphs

    Full text link
    We define persistent homology groups over any set of spaces which have inclusions defined so that the corresponding directed graph between the spaces is acyclic, as well as along any subgraph of this directed graph. This method simultaneously generalizes standard persistent homology, zigzag persistence and multidimensional persistence to arbitrary directed acyclic graphs, and it also allows the study of more general families of topological spaces or point-cloud data. We give an algorithm to compute the persistent homology groups simultaneously for all subgraphs which contain a single source and a single sink in O(n4)O(n^4) arithmetic operations, where nn is the number of vertices in the graph. We then demonstrate as an application of these tools a method to overlay two distinct filtrations of the same underlying space, which allows us to detect the most significant barcodes using considerably fewer points than standard persistence.Comment: Revised versio

    Surgical resection of a giant peripheral ossifying fibroma in mouth floor managed with fiberscopic intubation

    Get PDF
    Tracheal intubation for general anesthesia can sometimes be difficult in patients with a large mass in the mouth floor. Preoperative evaluation of the patient's airway is most important when treating large oral disease

    India

    Get PDF
    This article surveys significant legal developments in India during the year 2014

    (2E)-1-[2-Hydr­oxy-4-(2-methyl­prop­oxy)phen­yl]-3-(4-methyl­phen­yl)prop-2-en-1-one

    Get PDF
    The benzene rings in the title compound, C20H22O3, form a dihedral angle of 10.39 (8)°. Overall, the mol­ecule is approximately planar with the exception of one of the terminal methyl groups; excluding this group, the r.m.s. deviation for the remaining 22 non-H atoms is 0.0968 Å. The conformation about the C=C bond is E, and an intra­molecular O—H⋯O hydrogen bond leads to the formation of an S(6) motif. In the crystal, linear supra­molecular chains are formed along the a axis via C—H⋯O contacts, and these are connected into double chains via C—H⋯π inter­actions

    12-Lipoxygenase Inhibitor Improves Functions of Cytokine-Treated Human Islets and Type 2 Diabetic Islets

    Get PDF
    Context: The 12-lipoxygenase (12-LO) pathway produces proinflammatory metabolites, and its activation is implicated in islet inflammation associated with type 1 and type 2 diabetes (T2D). Objectives: We aimed to test the efficacy of ML355, a highly selective, small molecule inhibitor of 12-LO, for the preservation of islet function. Design: Human islets from nondiabetic donors were incubated with a mixture of tumor necrosis factor α , interluekin-1β, and interferon-γ to model islet inflammation. Cytokine-treated islets and human islets from T2D donors were incubated in the presence and absence of ML355. Setting: In vitro study. Participants: Human islets from organ donors aged >20 years of both sexes and any race were used. T2D status was defined from either medical history or most recent hemoglobin A1c value >6.5%. Intervention: Glucose stimulation. Main Outcome Measures: Static and dynamic insulin secretion and oxygen consumption rate (OCR). Results: ML355 prevented the reduction of insulin secretion and OCR in cytokine-treated human islets and improved both parameters in human islets from T2D donors. Conclusions: ML355 was efficacious in improving human islet function after cytokine treatment and in T2D islets in vitro. The study suggests that the blockade of the 12-LO pathway may serve as a target for both form of diabetes and provides the basis for further study of this small molecule inhibitor in vivo

    Ability of Group IVB metallocene polyethers containing dienestrol to arrest the growth of selected cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monomeric Group IVB (Ti, Zr and Hf) metallocenes represent a new class of antitumor compounds. There is literature on the general biological activities of some organotin compounds. Unfortunately, there is little information with respect to the molecular level activity of these organotin compounds. We recently started focusing on the anti-cancer activity of organotin polymers that we had made for other purposes and as part of our platinum anti-cancer effort.</p> <p>Methods</p> <p>For this study, we synthesized a new series of metallocene-containing compounds coupling the metallocene unit with dienestrol, a synthetic, nonsteroidal estrogen. This is part of our effort to couple known moieties that offer antitumor activity with biologically active units hoping to increase the biological activity of the combination. The materials were confirmed to be polymeric using light scattering photometry and the structural repeat unit was verified employing matrix assisted laser desorption ionization mass spectrometry and infrared spectroscopy results.</p> <p>Results</p> <p>The polymers demonstrated the ability to suppress the growth of a series of tumor cell lines originating from breast, colon, prostrate, and lung cancers at concentrations generally lower than those required for inhibition of cell growth by the commonly used antitumor drug cisplatin.</p> <p>Conclusion</p> <p>These drugs show great promise in vitro against a number of cancer cell lines and due to their polymeric nature will most likely be less toxic than currently used metal-containing drugs such as cisplatin. These drugs also offer several addition positive aspects. First, the reactants are commercially available so that additional synthetic steps are not needed. Second, synthesis of the polymer is rapid, occurring within about 15 seconds. Third, the interfacial synthetic system is already industrially employed in the synthesis of aromatic nylons and polycarbonates. Thus, the ability to synthesize large amounts of the drugs is straight forward.</p

    Neuropeptide signaling regulates the susceptibility of developing C. elegans to anoxia

    Get PDF
    Inadequate delivery of oxygen to organisms during development can lead to cell dysfunction/death and life-long disabilities. Although the susceptibility of developing cells to low oxygen conditions changes with maturation, the cellular and molecular pathways that govern responses to low oxygen are incompletely understood. Here we show that developing Caenorhabditis elegans are substantially more sensitive to anoxia than adult animals and that this sensitivity is controlled by nervous system generated hormones (e.g., neuropeptides). A screen of neuropeptide genes identified and validated nlp-40 and its receptor aex-2 as a key regulator of anoxic survival in developing worms. The survival-promoting action of impaired neuropeptide signaling does not rely on five known stress resistance pathways and is specific to anoxic insult. Together, these data highlight a novel cell non-autonomous pathway that regulates the susceptibility of developing organisms to anoxia

    Naloxone's Pentapeptide Binding Site on Filamin A Blocks Mu Opioid Receptor–Gs Coupling and CREB Activation of Acute Morphine

    Get PDF
    Chronic morphine causes the mu opioid receptor (MOR) to switch its coupling from Gi/o to Gs, resulting in excitatory signaling via both Gαs and its Gβγ dimer. Ultra-low-dose naloxone (NLX) prevents this switch and attenuates opioid tolerance and dependence. This protective effect is mediated via a high-affinity interaction of NLX to a pentapeptide region in c-terminal filamin A (FLNA), a scaffolding protein interacting with MOR. In organotypic striatal slice cultures, we now show that acute morphine induces a dose-dependent Go-to-Gs coupling switch at 5 and 15 min that resolves by 1 hr. The acute Gs coupling induced by 100 µM morphine was completely prevented by co-treatment with 100 pM NLX, (+)NLX, or naltrexone (NTX), or their pentapeptide binding site (FLNA2561–2565), which we show can act as a decoy for MOR or bind to FLNA itself. All of these co-treatments presumably prevent the MOR–FLNA interaction. Since ultra-low-dose NTX also attenuates the addictive properties of opioids, we assessed striatal cAMP production and CREB phosphorylation at S133. Correlating with the Gs coupling, acute morphine induced elevated cAMP levels and a several-fold increase in pS133CREB that were also completely blocked by NLX, NTX or the FLNA pentapeptide. We propose that acute, robust stimulation of MOR causes an interaction with FLNA that allows an initially transient MOR–Gs coupling, which recovers with receptor recycling but persists when MOR stimulation is repeated or prolonged. The complete prevention of this acute, morphine-induced MOR–Gs coupling by 100 pM NLX/NTX or 10 µM pentapeptide segment of FLNA further elucidates both MOR signaling and the mechanism of action of ultra-low-dose NLX or NTX in attenuating opioid tolerance, dependence and addictive potential
    corecore