1,079 research outputs found

    77Se NMR study of pairing symmetry and spin dynamics in KyFe2-xSe2

    Full text link
    We present a 77Se NMR study of the newly discovered iron selenide superconductor KyFe2-xSe2, in which Tc = 32 K. Below Tc, the Knight shift 77K drops sharply with temperature, providing strong evidence for singlet pairing. Above Tc, Korringa-type relaxation indicates Fermi-liquid behavior. Our experimental results set strict constraints on the nature of possible theories for the mechanism of high-Tc superconductivity in this iron selenide system.Comment: Chemical composition of crystals determined. Accepted in Physical Review Letter

    The Superconducting Transition Temperatures of Fe1+xSe1--y, Fe1+xSe1--yTey and (K/Rb/Cs)zFe2--xSe2

    Full text link
    In a recent contribution to this journal, it was shown that the transition temperatures of optimal high-Tc compounds obey the algebraic relation, Tc0 = kB-1{\beta}/\ell{\zeta}, where \ell is related to the mean spacing between interacting charges in the layers, {\zeta} is the distance between interacting electronic layers, {\beta} is a universal constant and kB is Boltzmann's constant. The equation was derived assuming pairing based on interlayer Coulomb interactions between physically separated charges. This theory was initially validated for 31 compounds from five different high-Tc families (within an accuracy of \pm1.37 K). Herein we report the addition of Fe1+xSe1-y and Fe1+xSe1-yTey (both optimized under pressure) and AzFe2-xSe2 (for A = K, Rb, or Cs) to the growing list of Coulomb-mediated superconducting compounds in which Tc0 is determined by the above equation. Doping in these materials is accomplished through the introduction of excess Fe and/or Se deficiency, or a combination of alkali metal and Fe vacancies. Consequently, a very small number of vacancies or interstitials can induce a superconducting state with a substantial transition temperature. The confirmation of the above equation for these Se-based Fe chalcogenides increases to six the number of superconducting families for which the transition temperature can be accurately predicted.Comment: 16 pages, 54 references 3 figures 1 tabl

    Multi-Receiver Quantum Dense Coding with Non-Symmetric Quantum Channel

    Full text link
    A two-receiver quantum dense coding scheme and an NN-receiver quantum dense coding scheme, in the case of non-symmetric Hilbert spaces of the particles of the quantum channel, are investigated in this paper. A sender can send his messages to many receivers simultaneously. The scheme can be applied to quantum secret sharing and controlled quantum dense coding.Comment: To appear in Journal of the Korean Physical Societ

    Reactive wear protection through strong and deformable oxide nanocomposite surfaces

    Get PDF
    Wear-resistant metals have long been a pursuit of reducing wear-related energy and material loss. Here the authors present the 'reactive wear protection' strategy via friction-induced in situ formation of strong and deformable oxide nanocomposites on a surface. Wear-related energy and material loss cost over 2500 Billion Euro per year. Traditional wisdom suggests that high-strength materials reveal low wear rates, yet, their plastic deformation mechanisms also influence their wear performance. High strength and homogeneous deformation behavior, which allow accommodating plastic strain without cracking or localized brittle fracture, are crucial for developing wear-resistant metals. Here, we present an approach to achieve superior wear resistance via in-situ formation of a strong and deformable oxide nanocomposite surface during wear, by reaction of the metal surface with its oxidative environment, a principle that we refer to as 'reactive wear protection'. We design a TiNbZr-Ag alloy that forms an amorphous-crystalline oxidic nanocomposite surface layer upon dry sliding. The strong (2.4 GPa yield strength) and deformable (homogeneous deformation to 20% strain) nanocomposite surface reduces the wear rate of the TiNbZr-Ag alloy by an order of magnitude. The reactive wear protection strategy offers a pathway for designing ultra-wear resistant alloys, where otherwise brittle oxides are turned to be strong and deformable for improving wear resistance

    Quantum transport in double-gated graphene devices

    Full text link
    Double-gated graphene devices provide an important platform for understanding electrical and optical properties of graphene. Here we present transport measurements of single layer, bilayer and trilayer graphene devices with suspended top gates. In zero magnetic fields, we observe formation of pnp junctions with tunable polarity and charge densities, as well as a tunable band gap in bilayer graphene and a tunable band overlap in trilayer graphene. In high magnetic fields, the devices' conductance are quantized at integer and fractional values of conductance quantum, and the data are in good agreement with a model based on edge state equilibration at pn interfaces

    Specific-heat study of superconducting and normal states in FeSe1-xTex (0.6<=x<=1) single crystals: Strong-coupling superconductivity, strong electron-correlation, and inhomogeneity

    Full text link
    The electronic specific heat of as-grown and annealed single-crystals of FeSe1-xTex (0.6<=x<=1) has been investigated. It has been found that annealed single-crystals with x=0.6-0.9 exhibit bulk superconductivity with a clear specific-heat jump at the superconducting (SC) transition temperature, Tc. Both 2Delta_0/kBTc [Delta_0: the SC gap at 0 K estimated using the single-band BCS s-wave model] and Delta C/(gamma_n-gamma_0)Tc [Delta C$: the specific-heat jump at Tc, gamma_n: the electronic specific-heat coefficient in the normal state, gamma_0: the residual electronic specific-heat coefficient at 0 K in the SC state] are largest in the well-annealed single-crystal with x=0.7, i.e., 4.29 and 2.76, respectively, indicating that the superconductivity is of the strong coupling. The thermodynamic critical field has also been estimated. gamma_n has been found to be one order of magnitude larger than those estimated from the band calculations and increases with increasing x at x=0.6-0.9, which is surmised to be due to the increase in the electronic effective mass, namely, the enhancement of the electron correlation. It has been found that there remains a finite value of gamma_0 in the SC state even in the well-annealed single-crystals with x=0.8-0.9, suggesting an inhomogeneous electronic state in real space and/or momentum space.Comment: 22 pages, 1 table, 6 figures, Version 2 has been accepted for publication in J. Phys. Soc. Jp

    Truth-telling to the patient, family, and the sexual partner: a rights approach to the role of healthcare providers in adult HIV disclosure in China.

    Get PDF
    Patients' rights are central in today's legislation and social policies related to health care, including HIV care, in not only Western countries but around the world. However, given obvious socio-cultural differences it is often asked how or to what extent patients' rights should be respected in non-Western societies such as China. In this paper, it is argued that the patients' rights framework is compatible with Chinese culture, and that from the perspective of contemporary patient rights healthcare providers have a duty to disclose truthfully the diagnosis and prognosis to their patients, that the Chinese cultural practice of involving families in care should - with consent from the patient - be promoted out of respect for patients' rights and well-being, and that healthcare providers should be prepared to address the issue of disclosing a patient's HIV status to sexual partner(s). Legally, the provider should be permitted to disclose without consent from the patient but not obliged to in all cases. The decision to do this should be taken with trained sensitivity to a range of ethically relevant considerations. Post-disclosure counseling or psychological support should be in place to address the concerns of potentially adverse consequences of provider-initiated disclosure and to maximize the psychosocial and medical benefits of the disclosure. There is an urgent need for healthcare providers to receive training in ethics and disclosure skills. This paper concludes also with some suggestions for improving the centerpiece Chinese legislation, State Council's "Regulations on AIDS Prevention and Control" (2006), to further safeguard the rights and well-being of HIV patients

    Acceleration disturbances and requirements for ASTROD I

    Full text link
    ASTRODynamical Space Test of Relativity using Optical Devices I (ASTROD I) mainly aims at testing relativistic gravity and measuring the solar-system parameters with high precision, by carrying out laser ranging between a spacecraft in a solar orbit and ground stations. In order to achieve these goals, the magnitude of the total acceleration disturbance of the proof mass has to be less than 10&#8722;13 m s&#8722;2 Hz&#8722;1/2 at 0.1 m Hz. In this paper, we give a preliminary overview of the sources and magnitude of acceleration disturbances that could arise in the ASTROD I proof mass. Based on the estimates of the acceleration disturbances and by assuming a simple controlloop model, we infer requirements for ASTROD I. Our estimates show that most of the requirements for ASTROD I can be relaxed in comparison with Laser Interferometer Space Antenna (LISA).Comment: 19 pages, two figures, accepted for publication by Class. Quantum Grav. (at press

    Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes

    Get PDF
    As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society

    How close can one approach the Dirac point in graphene experimentally?

    Full text link
    The above question is frequently asked by theorists who are interested in graphene as a model system, especially in context of relativistic quantum physics. We offer an experimental answer by describing electron transport in suspended devices with carrier mobilities of several 10^6 cm^2V^-1s^-1 and with the onset of Landau quantization occurring in fields below 5 mT. The observed charge inhomogeneity is as low as \approx10^8 cm^-2, allowing a neutral state with a few charge carriers per entire micron-scale device. Above liquid helium temperatures, the electronic properties of such devices are intrinsic, being governed by thermal excitations only. This yields that the Dirac point can be approached within 1 meV, a limit currently set by the remaining charge inhomogeneity. No sign of an insulating state is observed down to 1 K, which establishes the upper limit on a possible bandgap
    • …
    corecore