1,471 research outputs found

    Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis.

    Get PDF
    Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength

    Prolonged activation of S6K1 does not suppress IRS or PI-3 kinase signaling during muscle cell differentiation

    Get PDF
    Background: Myogenesis in C2C12 cells requires the activation of the PI3K/mTOR signaling pathways. Since mTOR signaling can feedback through S6K1 to inhibit the activation of PI3K, the aim of this work was to assess whether feedback from S6K1 played a role in myogenesis and determine whether siRNA mediated knockdown of S6K1 would lead to an increased rate of myotube formation. Results: S6K1 activity increased in a linear fashion following plating and was more than 3-fold higher after Day 3 of differentiation (subconfluent = 11.09 ± 3.05, Day 3 = 29.34 ± 3.58). IRS-1 levels tended to increase upon serum withdrawal but decreased approximately 2-fold (subconfluent = 0.88 ± 0.10, Day 3 = 0.42 ± 0.06) 3 days following differentiation whereas IRS-2 protein remained stable. IRS-1 associated p85 was significantly reduced upon serum withdrawal (subconfluent = 0.86 ± 0.07, Day 0 = 0.31 ± 0.05), remaining low through day 1. IRS-2 associated p85 decreased following serum withdrawal (subconfluent = 0.96 ± 0.05, Day 1 = 0.56 ± 0.08) and remained suppressed up to Day 3 following differentiation (0.56 ± 0.05). Phospho-tyrosine associated p85 increased significantly from subconfluent to Day 0 and remained elevated throughout differentiation. siRNA directed against S6K1 and S6K2 did not result in changes in IRS-1 levels after either 48 or 96 hrs. Furthermore, neither 48 nor 96 hrs of S6K1 knockdown caused a change in myotube formation. Conclusions: Even though S6K1 activity increases throughout muscle cell differentiation and IRS-1 levels decrease over this period, siRNA suggests that S6K1 is not mediating the decrease in IRS-1. The decrease in IRS-1/2 associated p85 together with the increase in phospho-tyrosine associated p85 suggests that PI3K associates primarily with scaffolds other than IRS-1/2 during muscle cell differentiation

    Vertical flux of fatty acids in the North Atlantic Ocean

    Get PDF
    The quantitative and qualitative composition of fatty acids in particulate material collected in traps deployed during 98 days at 389, 988, 3755 and 5068 m depths in the equatorial North Atlantic was determined. The fatty acid composition indicates a predominantly marine source (14:0, 16:0, 16:1, 18:0, 18:1, 20:5, 20:4, 22:6, 22:5) with possibly a minor terrigenous component in the bathypelagic traps. The vertical fluxes of fatty acids and lipids decrease rapidly with depth. The rate of net loss of carboxylic acids increases with number of double bonds and decreases with number of carbon atoms. Iso- and anteiso- as well as some monoenoic fatty acids are more persistent, probably due to enhanced microbial synthesis during settling which counteracts degradation

    Evaluation of the Ontario Mediation Program (Rule 24.1) Final Report: The First 23 Months

    Get PDF
    https://digitalcommons.osgoode.yorku.ca/faculty_books/1142/thumbnail.jp

    Evaluation of the Ontario Mediation Program (Rule 24.1) Final Report: The First 23 Months

    Get PDF
    https://digitalcommons.osgoode.yorku.ca/faculty_books/1142/thumbnail.jp

    Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport

    Get PDF
    The morphological development of fluvial and tidal systems is forecast more and more frequently by models in scientific and engineering studies for decision making regarding climate change mitigation, flood control, navigation and engineering works. However, many existing morphodynamic models predict unrealistically high channel incision, which is often dampened by increased gravity-driven sediment transport on side-slopes by up to two orders of magnitude too high. Here we show that such arbitrary calibrations dramatically bias sediment dynamics, channel patterns, and rate of morphological change. For five different models bracketing a range of scales and environments, we found that it is impossible to calibrate a model on both sediment transport magnitude and morphology. Consequently, present calibration practice may cause an order magnitude error in either morphology or morphological change. We show how model design can be optimized for different applications. We discuss the major implications for model interpretation and a critical knowledge gap

    Sawtooth period pacing and locking by EC power control on TCV

    Get PDF
    Abstract #TP9.127 submitted for the DPP11 Meeting of The American Physical Society

    Molecular brakes regulating mTORC1 activation in skeletal muscle following synergist ablation

    Get PDF
    The goal of the current work was to profile positive (mTORC1 activation, autocrine/paracrine growth factors) and negative [AMPK, unfolded protein response (UPR)] pathways that might regulate overload-induced mTORC1 (mTOR complex 1) activation with the hypothesis that a number of negative regulators of mTORC1 will be engaged during a supraphysiological model of hypertrophy. To achieve this, mTORC1- IRS-1/2 signaling, BiP/CHOP/IRE1, and AMPK activation were determined in rat plantaris muscle following synergist ablation (SA). SA resulted in significant increases in muscle mass of 4% per day throughout the 21 days of the experiment. The expression of the insulin-like growth factors (IGF) were high throughout the 21st day of overload. However, IGF signaling was limited, since IRS-1 and -2 were undetectable in the overloaded muscle from day 3 to day 9. The decreases in IRS-1/2 protein were paralleled by increases in GRB10 Ser501/503 and S6K1 Thr389 phosphorylation, two mTORC1 targets that can destabilize IRS proteins. PKB Ser473 phosphorylation was higher from 3– 6 days, and this was associated with increased TSC2 Thr939 phosphorylation. The phosphorylation of TSC2 Thr1345 (an AMPK site) was also elevated, whereas phosphorylation at the other PKB site, Thr1462, was unchanged at 6 days. In agreement with the phosphorylation of Thr1345, SA led to activation of AMPK1 during the initial growth phase, lasting the first 9 days before returning to baseline by day 12. The UPR markers CHOP and BiP were elevated over the first 12 days following ablation, whereas IRE1 levels decreased. These data suggest that during supraphysiological muscle loading at least three potential molecular brakes engage to downregulate mTORC1. m
    • …
    corecore