520 research outputs found

    Identifying Nearby UHECR Accelerators using UHE (and VHE) Photons

    Full text link
    Ultra-high energy photons (UHE, E > 10^19 eV) are inevitably produced during the propagation of 10^20 eV protons in extragalactic space. Their short interaction lengths (<20 Mpc) at these energies, combined with the impressive sensitivity of the Pierre Auger Observatory detector to these particles, makes them an ideal probe of nearby ultra-high-energy cosmic ray (UHECR) sources. We here discuss the particular case of photons from a single nearby (within 30 Mpc) source in light of the possibility that such an object might be responsible for several of the UHECR events published by the Auger collaboration. We demonstrate that the photon signal accompanying a cluster of a few > 6x10^19 eV UHECRs from such a source should be detectable by Auger in the near future. The detection of these photons would also be a signature of a light composition of the UHECRs from the nearby source.Comment: 4 pages, 2 figures, accepted for publication in PR

    Techniques for measuring atmospheric aerosols at the High Resolution Fly's Eye experiment

    Full text link
    We describe several techniques developed by the High Resolution Fly's Eye experiment for measuring aerosol vertical optical depth, aerosol horizontal attenuation length, and aerosol phase function. The techniques are based on measurements of side-scattered light generated by a steerable ultraviolet laser and collected by an optical detector designed to measure fluorescence light from cosmic-ray air showers. We also present a technique to cross-check the aerosol optical depth measurement using air showers observed in stereo. These methods can be used by future air fluorescence experiments.Comment: Accepted for publication in Astroparticle Physics Journal 16 pages, 9 figure

    Nature or nurture BMI and blood pressure at 90. Findings from the Belfast Elderly longitudinal free-living aging study Belfast

    Get PDF
    Hypertension is a key risk factor for stroke, cardiovascular disease and dementia. Although the link between weight, sodium and hypertension is established in younger people, little is known about their inter-relationship in people beyond 80 years of age. Associations between blood pressure, anthropometric indices and sodium were investigated in 495 apparently healthy, community-living participants (age 90, SD 4.8; range 80–106), from the cross-sectional Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) study. In age-sex-adjusted logistic regression models, blood pressure =140/90 mmHg significantly associated with body mass index (BMI) [odds ratio (OR)?=?1.28/ kg/m2], with weight (OR?=?1.22/kg) approaching significance (P?=?0.07). In further age-sex-adjusted models, blood pressure above the 120/80 mmHg normotensive reference value significantly associated with BMI (OR?=?1.44/kg/m2), weight (OR?=?1.36/kg), skin-fold-thickness (OR?=?1.33/mm) and serum sodium (OR?=?1.37 mmol/l). In BELFAST participants over 80 years old, blood pressure =140/90 mmHg is associated with BMI, in apparently similar ways to younger groups

    Study of Small-Scale Anisotropy of Ultrahigh Energy Cosmic Rays Observed in Stereo by HiRes

    Full text link
    The High Resolution Fly's Eye (HiRes) experiment is an air fluorescence detector which, operating in stereo mode, has a typical angular resolution of 0.6 degrees and is sensitive to cosmic rays with energies above 10^18 eV. HiRes is thus an excellent instrument for the study of the arrival directions of ultrahigh energy cosmic rays. We present the results of a search for anisotropies in the distribution of arrival directions on small scales (<5 degrees) and at the highest energies (>10^19 eV). The search is based on data recorded between 1999 December and 2004 January, with a total of 271 events above 10^19 eV. No small-scale anisotropy is found, and the strongest clustering found in the HiRes stereo data is consistent at the 52% level with the null hypothesis of isotropically distributed arrival directions.Comment: 4 pages, 3 figures. Matches accepted ApJL versio

    On astrophysical solution to ultra high energy cosmic rays

    Full text link
    We argue that an astrophysical solution to UHECR problem is viable. The pectral features of extragalactic protons interacting with CMB are calculated in model-independent way. Using the power-law generation spectrum Eγg\propto E^{-\gamma_g} as the only assumption, we analyze four features of the proton spectrum: the GZK cutoff, dip, bump and the second dip. We found the dip, induced by electron-positron production on CMB, as the most robust feature, existing in energy range 1×10184×10191\times 10^{18} - 4\times 10^{19} eV. Its shape is stable relative to various phenomena included in calculations. The dip is well confirmed by observations of AGASA, HiRes, Fly's Eye and Yakutsk detectors. The best fit is reached at γg=2.7\gamma_g =2.7, with the allowed range 2.55 - 2.75. The dip is used for energy calibration of the detectors. After the energy calibration the fluxes and spectra of all three detectors agree perfectly, with discrepancy between AGASA and HiRes at E>1×1020E> 1\times 10^{20} eV being not statistically significant. The agreement of the dip with observations should be considered as confirmation of UHE proton interaction with CMB. The dip has two flattenings. The high energy flattening at E1×1019E \approx 1\times 10^{19} eV automatically explains ankle. The low-energy flattening at E1×1018E \approx 1\times 10^{18} eV provides the transition to galactic cosmic rays. This transition is studied quantitatively. The UHECR sources, AGN and GRBs, are studied in a model-dependent way, and acceleration is discussed. Based on the agreement of the dip with existing data, we make the robust prediction for the spectrum at 1×10181×10201\times 10^{18} - 1\times 10^{20} eV to be measured in the nearest future by Auger detector.Comment: Revised version as published in Phys.Rev. D47 (2006) 043005 with a small additio

    Measurement of the Flux of Ultrahigh Energy Cosmic Rays from Monocular Observations by the High Resolution Fly's Eye Experiment

    Get PDF
    We have measured the cosmic ray spectrum above 10^17.2 eV using the two air fluorescence detectors of the High Resolution Fly's Eye observatory operating in monocular mode. We describe the detector, photo-tube and atmospheric calibrations, as well as the analysis techniques for the two detectors. We fit the spectrum to a model consisting of galactic and extra-galactic sources.Comment: 4 pages, 4 figures. Uses 10pt.rtx, amsmath.sty, aps.rtx, revsymb.sty, revtex4.cl
    corecore