5,658 research outputs found

    A Fast Frequency Sweep – Green’s Function Based Analysis of Substrate Integrated Waveguide

    Get PDF
    In this paper, a fast frequency sweep technique is applied to the analysis of Substrate Integrated Waveguides performed with a Green’s function technique. The well-known Asymptotic Waveform Evaluation technique is used to extract the Padè approximation of the frequency response of Substrate Integrated Waveguides devices. The analysis is extended to a large frequency range by adopting the Complex Frequency Hopping algorithm. It is shown that, with this technique, CPU time can be reduced of almost one order of magnitude with respect to a point by point computation

    Seismic performance of bridges isolated with FPS

    Get PDF
    The scope of the present study is focused on the evaluation of the seismic response of bridges isolated by single concave sliding pendulum isolators (FPS) for the different structural properties when the presence of the rigid abutment is considered or neglected (i.e., isolated viaducts). In this way, they have been defined two specific multi-degree-of-freedom (mdof) models to simulate the elastic behavior of the reinforced concrete pier in combination to the infinitely rigid presence of the deck and to the presence of the rigid abutment if considered. Both the numerical models also account for the non-linear velocity-dependent behavior of the FPS bearings. Considering the aleatory uncertainty in the seismic input by means of several natural records with different characteristics, a parametric analysis is developed for several structural properties. The relevant results expressed as the statistics in non-dimensional form with respect to the seismic intensity have permitted to study the differences between the two numerical models in relation to the effectiveness of the seismic isolation

    Optimal DCFP bearing properties and seismic performance assessment in nondimensional form for isolated bridges

    Get PDF
    The study analyzes the influence of double concave friction pendulum (DCFP) isolator properties on the seismic performance of isolated multispan continuous deck bridges. The behavior of these systems is analyzed by employing an eight-degree-of-freedom model accounting for the pier flexibility in addition to the rigid presence of both abutment and deck, whereas the DCFP isolator behavior is described combining two single FP devices in series. The uncertainty in the seismic input is taken into account by considering a set of nonfrequent natural records with different characteristics. The variation of the statistics of the response parameters relevant to the seismic performance of the isolated bridges is investigated through the proposal of a nondimensionalization of the motion equations, with respect to the seismic intensity, within an extensive parametric study carried out for different isolator and bridge properties. Moreover, two cases related to different ratios between the sliding friction coefficients of the two surfaces of the DCFP devices are analyzed with the aim also to evaluate the corresponding optimal values able to minimize the seismic demand to the pier. In this way, all the presented nondimensional results are useful for the preliminary design or retrofit of multispan continuous deck bridges, isolated with DCFP devices, located in any site and in relation, especially, to the seismic ultimate limit states

    Optimal sliding friction coefficients for isolated viaducts and bridges: A comparison study

    Get PDF
    The aim of this work is to evaluate the influence of the pier–abutment–deck interaction on the seismic response of bridges isolated by single concave sliding pendulum isolators (friction pendulum system [FPS]) through a comparison with the results of the seismic response of isolated bridges without considering the presence of the rigid abutment (i.e., isolated viaducts). Two different multidegree-of-freedom (mdof) models are properly defined to carry out this comparison. In the both mdof models, five vibrational modes are considered to describe the elastic behavior of the reinforced concrete pier, and an additional degree of freedom is adopted to analyze the response of the infinitely rigid deck isolated by the seismic devices. The FPS isolator behavior is described through a widespread velocity-dependent model. By means of a nondimensional formulation of the motion equations with respect to the seismic intensity, a parametric analysis for several structural properties is performed in order to investigate the differences between the two mdof models in relation to the relevant response parameters. The uncertainty in the seismic input is taken into account by means of a set of natural records with different characteristics. Finally, multivariate nonlinear regression relationships are provided to estimate the optimum values of the sliding friction coefficient able to minimize the pier displacements relative to the ground as a function of the structural properties considering or neglecting the presence of the abutment

    Status of Salerno Laboratory (Measurements in Nuclear Emulsion)

    Get PDF
    A report on the analysis work in the Salerno Emulsion Laboratory is presented. It is related to the search for nu_mu->nu_tau oscillations in CHORUS experiment, the calibrations in the WANF (West Area Neutrino Facility) at Cern and tests and preparation for new experiments.Comment: Proc. The First International Workshop of Nuclear Emulsion Techniques (12-24 June 1998, Nagoya, Japan), 15 pages, 11 figure

    General Dissipative Materials for Simple Histories

    Get PDF
    A material with memory typically has a set of many free energy functionals associated with it, all members of which yield the same constitutive relations. An alternative interpretation of this set is explored in the present work. Explicit formulae are derived for the free energy and total dissipation of an arbitrary material in the cases of step function and sinusoidal/exponential histories. Expressions for the fraction of stored and dissipated energy are deduced. Also, various formulae are given for discrete spectrum materials. For materials with relaxation function containing one decaying exponential, the associated Day functional is the physical free energy. For more general materials, we seek a best fit of the relaxation function with one decaying expo- nential to that chosen for the general case. The free energy, total dissipation and fractions of stored and dissipated energies relating to the Day material are derived for the various histories. Similar data, in the case of the general mate- rial, are explored for the minimum and maximum free energies and also for a centrally located free energy given in the literature. Various plots of aspects of this data, including comparisons between the behaviour for general and Day materials, are presented and discussed

    Scaling solutions in general non-minimal coupling theories

    Get PDF
    A class of generalized non-minimal coupling theories is investigated, in search of scaling attractors able to provide an accelerated expansion at the present time. Solutions are found in the strong coupling regime and when the coupling function and the potential verify a simple relation. In such cases, which include power law and exponential functions, the dynamics is independent of the exact form of the coupling and the potential. The constraint from the time variability of GG, however, limits the fraction of energy in the scalar field to less than 4% of the total energy density, and excludes accelerated solutions at the present.Comment: 10 pages, 3 figures, accepted for publication in Phys. Rev.

    Cosmological model with interactions in the dark sector

    Get PDF
    A cosmological model is proposed for the current Universe consisted of non-interacting baryonic matter and interacting dark components. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio between their energy densities. It is investigated two cases where the ratio is asymptotically stable and their parameters are adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the densities parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.Comment: 6 pages, 8 figure
    • …
    corecore