182 research outputs found
Estimating Level of Engagement from Ocular Landmarks
E-learning offers many advantages like being economical, flexible and customizable, but also has challenging aspects such as lack of – social-interaction, which results in contemplation and sense of remoteness. To overcome these and sustain learners’ motivation, various stimuli can be incorporated. Nevertheless, such adjustments initially require an assessment of engagement level. In this respect, we propose estimating engagement level from facial landmarks exploiting the facts that (i) perceptual decoupling is promoted by blinking during mentally demanding tasks; (ii) eye strain increases blinking rate, which also scales with task disengagement; (iii) eye aspect ratio is in close connection with attentional state and (iv) users’ head position is correlated with their level of involvement. Building empirical models of these actions, we devise a probabilistic estimation framework. Our results indicate that high and low levels of engagement are identified with considerable accuracy, whereas medium levels are inherently more challenging, which is also confirmed by inter-rater agreement of expert coders
Affective brain–computer music interfacing
We aim to develop and evaluate an affective brain–computer music interface
(aBCMI) for modulating the affective states of its users. Approach. An aBCMI is constructed to
detect a userʼs current affective state and attempt to modulate it in order to achieve specific
objectives (for example, making the user calmer or happier) by playing music which is generated
according to a specific affective target by an algorithmic music composition system and a casebased
reasoning system. The system is trained and tested in a longitudinal study on a population
of eight healthy participants, with each participant returning for multiple sessions. Main results.
The final online aBCMI is able to detect its users current affective states with classification
accuracies of up to 65% (3 class, p < 0.01) and modulate its userʼs affective states significantly
above chance level (p < 0.05). Significance. Our system represents one of the first
demonstrations of an online aBCMI that is able to accurately detect and respond to userʼs
affective states. Possible applications include use in music therapy and entertainmen
An Ensemble Interpretable Machine Learning Scheme for Securing Data Quality at the Edge
Data quality is a significant research subject for any application that requests for analytics to support decision making. It becomes very important when we focus on Internet of Things (IoT) where numerous devices can interact to exchange and process data. IoT devices are connected to Edge Computing (EC) nodes to report the collected data, thus, we have to secure data quality not only at the IoT infrastructure but also at the edge of the network. In this paper, we focus on the specific problem and propose the use of interpretable machine learning to deliver the features that are important to be based on for any data processing activity. Our aim is to secure data quality for those features, at least, that are detected as significant in the collected datasets. We have to notice that the selected features depict the highest correlation with the remaining ones in every dataset, thus, they can be adopted for dimensionality reduction. We focus on multiple methodologies for having interpretability in our learning models and adopt an ensemble scheme for the final decision. Our scheme is capable of timely retrieving the final result and efficiently selecting the appropriate features. We evaluate our model through extensive simulations and present numerical results. Our aim is to reveal its performance under various experimental scenarios that we create varying a set of parameters adopted in our mechanism
Identification of Novel Functional Inhibitors of Acid Sphingomyelinase
We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimer's disease, major depression, radiation- and chemotherapy-induced apoptosis and endotoxic shock syndrome. Residual activity of ASM measured in the presence of 10 µM drug concentration shows a bimodal distribution; thus the tested drugs can be classified into two groups with lower and higher inhibitory activity. All FIASMAs share distinct physicochemical properties in showing lipophilic and weakly basic properties. Hierarchical clustering of Tanimoto coefficients revealed that FIASMAs occur among drugs of various chemical scaffolds. Moreover, FIASMAs more frequently violate Lipinski's Rule-of-Five than compounds without effect on ASM. Inhibition of ASM appears to be associated with good permeability across the blood-brain barrier. In the present investigation, we developed a novel structure-property-activity relationship by using a random forest-based binary classification learner. Virtual screening revealed that only six out of 768 (0.78%) compounds of natural products functionally inhibit ASM, whereas this inhibitory activity occurs in 135 out of 2028 (6.66%) drugs licensed for medical use in humans
- …