3,379 research outputs found

    Flow Pressure Behavior Downstream of Ski Jumps

    Get PDF
    Ski jump spillways are frequently implemented to dissipate energy from high-speed flows. The general feature of this structure is to transform the spillway flow into a free jet up to a location where the impact of the jet creates a plunge pool, representing an area for potential erosion phenomena. In the present investigation, several tests with di erent ski jump bucket angles are executed numerically by means of the OpenFOAM® digital library, taking advantage of the Reynolds-averaged Navier–Stokes equations (RANS) approach. The results are compared to those obtained experimentally by other authors as related to the jet length and shape, obtaining physical insights into the jet characteristics. Particular attention is given to the maximum pressure head at the tailwater. Simple equations are proposed to predict the maximum dynamic pressure head acting on the tailwater, as dependent upon the Froude number, and the maximum pressure head on the bucket. Results of this study provide useful suggestions for the design of ski jump spillways in dam construction

    Drift dependence of optimal trade execution strategies under transient price impact

    Full text link
    We give a complete solution to the problem of minimizing the expected liquidity costs in presence of a general drift when the underlying market impact model has linear transient price impact with exponential resilience. It turns out that this problem is well-posed only if the drift is absolutely continuous. Optimal strategies often do not exist, and when they do, they depend strongly on the derivative of the drift. Our approach uses elements from singular stochastic control, even though the problem is essentially non-Markovian due to the transience of price impact and the lack in Markovian structure of the underlying price process. As a corollary, we give a complete solution to the minimization of a certain cost-risk criterion in our setting

    Flow Resistance in Open Channel Due to Vegetation at Reach Scale: A Review

    Get PDF
    Vegetation on the banks and flooding areas of watercourses significantly affects energy losses. To take the latter into account, computational models make use of resistance coefficients based on the evaluation of bed and walls roughness besides the resistance to flow offered by vegetation. This paper, after summarizing the classical approaches based on descriptions and pictures, considers the recent advancements related to the analytical methods relative both to rigid and flexible vegetation. In particular, emergent rigid vegetation is first analyzed by focusing on the methods for determining the drag coefficient, then submerged rigid vegetation is analyzed, highlighting briefly the principles on which the different models are based and recalling the comparisons made in the literature. Then, the models used in the case of both emergent and submerged rigid vegetation are highlighted. As to flexible vegetation, the paper reminds first the flow conditions that cause the vegetation to lay on the channel bed, and then the classical resistance laws that were developed for the design of irrigation canals. The most recent developments in the case of submerged and emergent flexible vegetation are then presented. Since turbulence studies should be considered as the basis of flow resistance, even though the path toward practical use is still long, the new developments in the field of 3D numerical methods are briefly reviewed, presently used to assess the characteristics of turbulence and the transport of sediments and pollutants. The use of remote sensing to map riparian vegetation and estimating biomechanical parameters is briefly analyzed. Finally, some applications are presented, aimed at highlighting, in real cases, the influence exerted by vegetation on water depth and maintenance interventions

    Discharge coefficients for sluice gates set in weirs at different ustream wall inclination

    Get PDF
    Laboratory experiments and numerical simulations are performed to measure discharge coecients in the case of a gate located on the upstream wall of a weir for flood storage. The eect of the gate slope and the side contraction have been taken into account. The study was first performed experimentally, when three series of tests were carried out with (and without) a broad crested weir located under the gate, at dierent values of the inclination angle of the weir upstream wall, and at dierent values of the shape ratio and the relative opening. In order to provide useful suggestions for those involved in sluice gate construction and management, three equations were obtained based on multiple regression, relating the discharge coecient to dierent parameters that characterize the phenomenon at hand, separating the case when the broad-crested weir was present. Then numerical simulations were executed by means of the Reynolds-averaged Navier–Stokes (RANS) equations with the k-" turbulence closure model and in conjunction with the volume of fluid (VOF) method, to validate the numerical results against the experimental and to possibly investigate phenomena not caught by the experimental measurements. Simulated discharges were very close to the observed ones showing that the proposed three-dimensional numerical procedure is a favorable option to correctly reproduce the phenomenon

    Polar cap absorption events of November 2001 at Terra Nova Bay, Antarctica

    Get PDF
    Polar cap absorption (PCA) events recorded during November 2001 are investigated by observations of ionospheric absorption of a 30MHz riometer installed at Terra Nova Bay (Antarctica), and of solar proton flux, monitored by the NOAA-GOES8 satellite in geo-synchronous orbit. During this period three solar proton events (SPE) on 4, 19 and 23 November occurred. Two of these are among the dozen most intense events since 1954 and during the current solar cycle (23rd), the event of 4 November shows the greatest proton flux at energies >10MeV. Many factors contribute to the peak intensity of the two SPE biggest events, one is the Coronal Mass Ejection (CME) speed, other factors are the ambient population of SPE and the shock front due to the CME. During these events absorption peaks of several dB (~20dB) are observed at Terra Nova Bay, tens of minutes after the impact of fast halo CMEs on the geomagnetic field. </p><p style="line-height: 20px;"> Results of a cross-correlation analysis show that the first hour of absorption is mainly produced by 84–500MeV protons in the case of the 4 November event and by 15–44MeV protons for the event of 23 November, whereas in the entire event the contribution to the absorption is due chiefly to 4.2–82MeV (4 November) and by 4.2–14.5MeV (23 November). Good agreement is generally obtained between observed and calculated absorption by the empirical flux-absorption relationship for threshold energy <i>E<sub>0</sub></i>=10MeV. From the residuals one can argue that other factors (e.g. X-ray increases and geomagnetic disturbances) can contribute to the ionospheric absorption.<br><br><b>Key words.</b> Ionosphere (Polar Ionosphere, Particle precipitation) – Solar physics (Flares and mass ejections

    Proper orthogonal decomposition of solar photospheric motions

    Full text link
    The spatio-temporal dynamics of the solar photosphere is studied by performing a Proper Orthogonal Decomposition (POD) of line of sight velocity fields computed from high resolution data coming from the MDI/SOHO instrument. Using this technique, we are able to identify and characterize the different dynamical regimes acting in the system. Low frequency oscillations, with frequencies in the range 20-130 microHz, dominate the most energetic POD modes (excluding solar rotation), and are characterized by spatial patterns with typical scales of about 3 Mm. Patterns with larger typical scales of 10 Mm, are associated to p-modes oscillations at frequencies of about 3000 microHz.Comment: 8 figures in jpg in press on PR

    GNSS data filtering optimization for ionospheric observation

    Get PDF
    In the last years, the use of GNSS (Global Navigation Satellite Systems) data has been gradually increasing, for both scientific studies and technological applications. High-rate GNSS data, able to generate and output 50-Hz phase and amplitude samples, are commonly used to study electron density irregularities within the ionosphere. Ionospheric irregularities may cause scintillations, which are rapid and random fluctuations of the phase and the amplitude of the received GNSS signals. For scintillation analysis, usually, GNSS signals observed at an elevation angle lower than an arbitrary threshold (usually 15 , 20 or 30 ) are filtered out, to remove the possible error sources due to the local environment where the receiver is deployed. Indeed, the signal scattered by the environment surrounding the receiver could mimic ionospheric scintillation, because buildings, trees, etc. might create diffusion, diffraction and reflection. Although widely adopted, the elevation angle threshold has some downsides, as it may under or overestimate the actual impact of multipath due to local environment. Certainly, an incorrect selection of the field of view spanned by the GNSS antenna may lead to the misidentification of scintillation events at low elevation angles. With the aim to tackle the non-ionospheric effects induced by multipath at ground, in this paper we introduce a filtering technique, termed SOLIDIFY (Standalone OutLiers IDentIfication Filtering analYsis technique), aiming at excluding the multipath sources of non-ionospheric origin to improve the quality of the information obtained by the GNSS signal in a given site. SOLIDIFY is a statistical filtering technique based on the signal quality parameters measured by scintillation receivers. The technique is applied and optimized on the data acquired by a scintillation receiver located at the Istituto Nazionale di Geofisica e Vulcanologia, in Rome. The results of the exercise show that, in the considered case of a noisy site under quiet ionospheric conditions, the SOLIDIFY optimization maximizes the quality, instead of the quantity, of the data.Published2552–25622A. Fisica dell'alta atmosferaJCR Journa
    • …
    corecore