647 research outputs found
Finite-distance singularities in the tearing of thin sheets
We investigate the interaction between two cracks propagating in a thin
sheet. Two different experimental geometries allow us to tear sheets by
imposing an out-of-plane shear loading. We find that two tears converge along
self-similar paths and annihilate each other. These finite-distance
singularities display geometry-dependent similarity exponents, which we
retrieve using scaling arguments based on a balance between the stretching and
the bending of the sheet close to the tips of the cracks.Comment: 4 pages, 4 figure
A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments
Most speech and language technologies are trained with massive amounts of
speech and text information. However, most of the world languages do not have
such resources or stable orthography. Systems constructed under these almost
zero resource conditions are not only promising for speech technology but also
for computational language documentation. The goal of computational language
documentation is to help field linguists to (semi-)automatically analyze and
annotate audio recordings of endangered and unwritten languages. Example tasks
are automatic phoneme discovery or lexicon discovery from the speech signal.
This paper presents a speech corpus collected during a realistic language
documentation process. It is made up of 5k speech utterances in Mboshi (Bantu
C25) aligned to French text translations. Speech transcriptions are also made
available: they correspond to a non-standard graphemic form close to the
language phonology. We present how the data was collected, cleaned and
processed and we illustrate its use through a zero-resource task: spoken term
discovery. The dataset is made available to the community for reproducible
computational language documentation experiments and their evaluation.Comment: accepted to LREC 201
First Order Phase Transition of a Long Polymer Chain
We consider a model consisting of a self-avoiding polygon occupying a
variable density of the sites of a square lattice. A fixed energy is associated
with each -bend of the polygon. We use a grand canonical ensemble,
introducing parameters and to control average density and average
(total) energy of the polygon, and show by Monte Carlo simulation that the
model has a first order, nematic phase transition across a curve in the
- plane.Comment: 11 pages, 7 figure
Casimir Effects in Renormalizable Quantum Field Theories
We review the framework we and our collaborators have developed for the study
of one-loop quantum corrections to extended field configurations in
renormalizable quantum field theories. We work in the continuum, transforming
the standard Casimir sum over modes into a sum over bound states and an
integral over scattering states weighted by the density of states. We express
the density of states in terms of phase shifts, allowing us to extract
divergences by identifying Born approximations to the phase shifts with low
order Feynman diagrams. Once isolated in Feynman diagrams, the divergences are
canceled against standard counterterms. Thus regulated, the Casimir sum is
highly convergent and amenable to numerical computation. Our methods have
numerous applications to the theory of solitons, membranes, and quantum field
theories in strong external fields or subject to boundary conditions.Comment: 27 pp., 11 EPS figures, LaTeX using ijmpa1.sty; email correspondence
to R.L. Jaffe ; based on talks presented by the authors at
the 5th workshop `QFTEX', Leipzig, September 200
Scale relativity and fractal space-time: theory and applications
In the first part of this contribution, we review the development of the
theory of scale relativity and its geometric framework constructed in terms of
a fractal and nondifferentiable continuous space-time. This theory leads (i) to
a generalization of possible physically relevant fractal laws, written as
partial differential equation acting in the space of scales, and (ii) to a new
geometric foundation of quantum mechanics and gauge field theories and their
possible generalisations. In the second part, we discuss some examples of
application of the theory to various sciences, in particular in cases when the
theoretical predictions have been validated by new or updated observational and
experimental data. This includes predictions in physics and cosmology (value of
the QCD coupling and of the cosmological constant), to astrophysics and
gravitational structure formation (distances of extrasolar planets to their
stars, of Kuiper belt objects, value of solar and solar-like star cycles), to
sciences of life (log-periodic law for species punctuated evolution, human
development and society evolution), to Earth sciences (log-periodic
deceleration of the rate of California earthquakes and of Sichuan earthquake
replicas, critical law for the arctic sea ice extent) and tentative
applications to system biology.Comment: 63 pages, 14 figures. In : First International Conference on the
Evolution and Development of the Universe,8th - 9th October 2008, Paris,
Franc
Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating
AIMS: To determine the feasibility of prospective electrocardiogram (ECG)-gating to achieve low-dose computed tomography coronary angiography (CTCA). METHODS AND RESULTS: Forty-one consecutive patients with suspected (n = 35) or known coronary artery disease (n = 6) underwent 64-slice CTCA using prospective ECG-gating. Individual radiation dose exposure was estimated from the dose-length product. Two independent readers semi-quantitatively assessed the overall image quality on a five-point scale and measured vessel attenuation in each coronary segment. One patient was excluded for atrial fibrillation. Mean effective radiation dose was 2.1 +/- 0.6 mSv (range, 1.1-3.0 mSv). Image quality was inversely related to heart rate (HR) (57.3 +/- 6.2, range 39-66 b.p.m.; r = 0.58, P 63 b.p.m. (P < 0.001). CONCLUSION: This first experience documents the feasibility of prospective ECG-gating for CTCA with diagnostic image quality at a low radiation dose (1.1-3.0 mSv), favouring HR <63 b.p.
Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating
AIMS: To determine the feasibility of prospective electrocardiogram (ECG)-gating to achieve low-dose computed tomography coronary angiography (CTCA). METHODS AND RESULTS: Forty-one consecutive patients with suspected (n = 35) or known coronary artery disease (n = 6) underwent 64-slice CTCA using prospective ECG-gating. Individual radiation dose exposure was estimated from the dose-length product. Two independent readers semi-quantitatively assessed the overall image quality on a five-point scale and measured vessel attenuation in each coronary segment. One patient was excluded for atrial fibrillation. Mean effective radiation dose was 2.1 +/- 0.6 mSv (range, 1.1-3.0 mSv). Image quality was inversely related to heart rate (HR) (57.3 +/- 6.2, range 39-66 b.p.m.; r = 0.58, P 63 b.p.m. (P < 0.001). CONCLUSION: This first experience documents the feasibility of prospective ECG-gating for CTCA with diagnostic image quality at a low radiation dose (1.1-3.0 mSv), favouring HR <63 b.p.
Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed
The motor theory of speech perception holds that we perceive the speech of
another in terms of a motor representation of that speech. However, when we
have learned to recognize a foreign accent, it seems plausible that recognition
of a word rarely involves reconstruction of the speech gestures of the speaker
rather than the listener. To better assess the motor theory and this
observation, we proceed in three stages. Part 1 places the motor theory of
speech perception in a larger framework based on our earlier models of the
adaptive formation of mirror neurons for grasping, and for viewing extensions
of that mirror system as part of a larger system for neuro-linguistic
processing, augmented by the present consideration of recognizing speech in a
novel accent. Part 2 then offers a novel computational model of how a listener
comes to understand the speech of someone speaking the listener's native
language with a foreign accent. The core tenet of the model is that the
listener uses hypotheses about the word the speaker is currently uttering to
update probabilities linking the sound produced by the speaker to phonemes in
the native language repertoire of the listener. This, on average, improves the
recognition of later words. This model is neutral regarding the nature of the
representations it uses (motor vs. auditory). It serve as a reference point for
the discussion in Part 3, which proposes a dual-stream neuro-linguistic
architecture to revisits claims for and against the motor theory of speech
perception and the relevance of mirror neurons, and extracts some implications
for the reframing of the motor theory
- …
