112 research outputs found

    Nonlocal chiral quark models with Polyakov loop at finite temperature and chemical potential

    Full text link
    We analyze the chiral restoration and deconfinement transitions in the framework of a non-local chiral quark model which includes terms leading to the quark wave function renormalization, and takes care of the effect of gauge interactions by coupling the quarks with the Polyakov loop. Non-local interactions are described by considering both a set of exponential form factors, and a set of form factors obtained from a fit to the mass and renormalization functions obtained in lattice calculations.Comment: 8 pages, 2 figures; prepared for IV International Workshop on Astronomy and Relativistic Astrophysics (IWARA 2009), Maresias, 4-8 Oct 200

    Quark-hybrid matter in the cores of massive neutron stars

    Get PDF
    Using a nonlocal extension of the SU(3) Nambu-Jona Lasinio model, which reproduces several of the key features of Quantum Chromodynamics, we show that mixed phases of deconfined quarks and confined hadrons (quark-hybrid matter) may exist in the cores of neutron stars as massive as around 2.1 M_Sun. The radii of these objects are found to be in the canonical range of 1213\sim 12-13 km. According to our study, the transition to pure quark matter does not occur in stable neutron stars, but is shifted to neutron stars which are unstable against radial oscillations. The implications of our study for the recently discovered, massive neutron star PSR J1614-2230, whose gravitational mass is 1.97±0.04MSun1.97 \pm 0.04 M_Sun, are that this neutron star may contain an extended region of quark-hybrid matter at it center, but no pure quark matter.Comment: 13 pages, 3 figure

    Quark deconfinement in high-mass neutron stars

    Get PDF
    In this paper, we explore whether or not quark deconfinement may occur in high-mass neutron stars such as J1614-2230 (1.97 \pm 0.04 M_Sun) and J0348+0432 (2.01 \pm 0.04 M_Sun). Our study is based on a non-local extension of the SU(3) Nambu Jona-Lasinio (n3NJL) model with repulsive vector interactions among the quarks. This model goes beyond the frequently used local version of the Nambu Jona-Lasinio (NJL) model by accounting for several key features of QCD which are not part of the local model. Confined hadronic matter is treated in the framework of non-linear relativistic mean field theory. We find that both the local as well as the non-local NJL model predict the existence of extended regions of mixed quark-hadron (quark-hybrid) matter in high-mass neutron stars with masses of 2.1 to 2.4 M_Sun. Pure quark matter in the cores of neutron stars is obtained for certain parametrizations of the hadronic lagrangian and choices of the vector repulsion among quarks. The radii of high-mass neutron stars with quark-hybrid matter and/or pure quark matter cores in their centers are found to lie in the canonical range of 12 to 13 km.Comment: 31 pages, 17 figures, PRC accepted versio

    Medium induced Lorentz symmetry breaking effects in nonlocal PNJL models

    Get PDF
    In this paper we detail the thermodynamics of two flavor nonlocal Polyakov-Nambu-Jona-Lasinio models for different parametrizations of the quark interaction regulators. The structure of the model is upgraded in order to allow for terms in the quark selfenergy which violate Lorentz invariance due to the presence of the medium. We examine the critical properties, the phase diagram as well as the equation of state. Furthermore, some aspects of the Mott effect for pions and sigma mesons are discussed explicitly within a nonlocal Polyakov-Nambu-Jona-Lasinio model. In particular, we continued the meson polarization function in the complex energy plane and under certain approximations, we were able to extract the imaginary part as a function of the meson energy. We were not able to calculate the dynamical meson mass, and therefore resorted to a technical study of the temperature dependence of the meson width by replacing the meson energy with the temperature dependent spatial meson mass. Our results show that while the temperature behavior of the meson widths is qualitatively the same for a wide class of covariant regulators, the special case where the nonlocal interactions are introduced via the instanton liquid model singles out with a drastically different behavior.Comment: version to match the one published in PR

    Nonlocal Polyakov-Nambu-Jona-Lasinio model with wavefunction renormalization at finite temperature and chemical potential

    Full text link
    We study the phase diagram of strongly interacting matter in the framework of a non-local SU(2) chiral quark model which includes wave function renormalization and coupling to the Polyakov loop. Both non-local interactions based on the frequently used exponential form factor, and on fits to the quark mass and renormalization functions obtained in lattice calculations are considered. Special attention is paid to the determination of the critical points, both in the chiral limit and at finite quark mass. In particular, we study the position of the Critical End Point as well as the value of the associated critical exponents for different model parameterizations.Comment: v.2_August 2010, 26 pp, 8 fi

    Vantagens e limitações do uso de abrigos individuais e comunitários para a abelha indígena sem ferrão uruçu-amarela (Melipona flavolineata).

    Get PDF
    bitstream/item/28305/1/ComTec211.pdfDisponível também on-line

    Thermal evolution of hybrid stars within the framework of a nonlocal Nambu--Jona-Lasinio model

    Get PDF
    We study the thermal evolution of neutron stars containing deconfined quark matter in their core. Such objects are generally referred to as quark-hybrid stars. The confined hadronic matter in their core is described in the framework of non-linear relativistic nuclear field theory. For the quark phase we use a non-local extension of the SU(3) Nambu Jona-Lasinio model with vector interactions. The Gibbs condition is used to model phase equilibrium between confined hadronic matter and deconfined quark matter. Our study indicates that high-mass neutron stars may contain between 35 and 40 % deconfined quark-hybrid matter in their cores. Neutron stars with canonical masses of around 1.4M1.4\, M_\odot would not contain deconfined quark matter. The central proton fractions of the stars are found to be high, enabling them to cool rapidly. Very good agreement with the temperature evolution established for the neutron star in Cassiopeia A (Cas A) is obtained for one of our models (based on the popular NL3 nuclear parametrization), if the protons in the core of our stellar models are strongly paired, the repulsion among the quarks is mildly repulsive, and the mass of Cas A has a canonical value of 1.4M1.4\, M_\odot.Comment: 10 pages, 7 figure
    corecore