15,152 research outputs found
A class of quantum many-body states that can be efficiently simulated
We introduce the multi-scale entanglement renormalization ansatz (MERA), an
efficient representation of certain quantum many-body states on a D-dimensional
lattice. Equivalent to a quantum circuit with logarithmic depth and distinctive
causal structure, the MERA allows for an exact evaluation of local expectation
values. It is also the structure underlying entanglement renormalization, a
coarse-graining scheme for quantum systems on a lattice that is focused on
preserving entanglement.Comment: 4 pages, 5 figure
Geometrical optics analysis of the short-time stability properties of the Einstein evolution equations
Many alternative formulations of Einstein's evolution have lately been
examined, in an effort to discover one which yields slow growth of
constraint-violating errors. In this paper, rather than directly search for
well-behaved formulations, we instead develop analytic tools to discover which
formulations are particularly ill-behaved. Specifically, we examine the growth
of approximate (geometric-optics) solutions, studied only in the future domain
of dependence of the initial data slice (e.g. we study transients). By
evaluating the amplification of transients a given formulation will produce, we
may therefore eliminate from consideration the most pathological formulations
(e.g. those with numerically-unacceptable amplification). This technique has
the potential to provide surprisingly tight constraints on the set of
formulations one can safely apply. To illustrate the application of these
techniques to practical examples, we apply our technique to the 2-parameter
family of evolution equations proposed by Kidder, Scheel, and Teukolsky,
focusing in particular on flat space (in Rindler coordinates) and Schwarzchild
(in Painleve-Gullstrand coordinates).Comment: Submitted to Phys. Rev.
The role of initial conditions in the ageing of the long-range spherical model
The kinetics of the long-range spherical model evolving from various initial
states is studied. In particular, the large-time auto-correlation and -response
functions are obtained, for classes of long-range correlated initial states,
and for magnetized initial states. The ageing exponents can depend on certain
qualitative features of initial states. We explicitly find the conditions for
the system to cross over from ageing classes that depend on initial conditions
to those that do not.Comment: 15 pages; corrected some typo
Entanglement entropy of random quantum critical points in one dimension
For quantum critical spin chains without disorder, it is known that the
entanglement of a segment of N>>1 spins with the remainder is logarithmic in N
with a prefactor fixed by the central charge of the associated conformal field
theory. We show that for a class of strongly random quantum spin chains, the
same logarithmic scaling holds for mean entanglement at criticality and defines
a critical entropy equivalent to central charge in the pure case. This
effective central charge is obtained for Heisenberg, XX, and quantum Ising
chains using an analytic real-space renormalization group approach believed to
be asymptotically exact. For these random chains, the effective universal
central charge is characteristic of a universality class and is consistent with
a c-theorem.Comment: 4 pages, 3 figure
Entanglement renormalization
In the context of real-space renormalization group methods, we propose a
novel scheme for quantum systems defined on a D-dimensional lattice. It is
based on a coarse-graining transformation that attempts to reduce the amount of
entanglement of a block of lattice sites before truncating its Hilbert space.
Numerical simulations involving the ground state of a 1D system at criticality
show that the resulting coarse-grained site requires a Hilbert space dimension
that does not grow with successive rescaling transformations. As a result we
can address, in a quasi-exact way, tens of thousands of quantum spins with a
computational effort that scales logarithmically in the system's size. The
calculations unveil that ground state entanglement in extended quantum systems
is organized in layers corresponding to different length scales. At a quantum
critical point, each rellevant length scale makes an equivalent contribution to
the entanglement of a block with the rest of the system.Comment: 4 pages, 4 figures, updated versio
Dynamic crossover in the global persistence at criticality
We investigate the global persistence properties of critical systems relaxing
from an initial state with non-vanishing value of the order parameter (e.g.,
the magnetization in the Ising model). The persistence probability of the
global order parameter displays two consecutive regimes in which it decays
algebraically in time with two distinct universal exponents. The associated
crossover is controlled by the initial value m_0 of the order parameter and the
typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo
simulations of the two-dimensional Ising model with Glauber dynamics display
clearly this crossover. The measured exponent of the ultimate algebraic decay
is in rather good agreement with our theoretical predictions for the Ising
universality class.Comment: 5 pages, 2 figure
An aging evaluation of the bearing performances of glass fiber composite laminate in salt spray fog environment
The aim of the present paper is to assess the bearing performance evolution of pinned, glass-composite laminates due to environmental aging in salt-spray fog tests. Glass fibers/epoxy pinned laminates were exposed for up to 60 days in salt-spraying, foggy environmental conditions (according to ASTM B117 standard). In order to evaluate the relationship between mechanical failure mode and joint stability over increasing aging time, different single lap joints, measured by the changing hole diameter (D), laminate width (W) and hole free edge distance (E), were characterized at varying aging steps. Based on this approach, the property-structure relationship of glass-fibers/epoxy laminates was assessed under these critical environmental conditions. Furthermore, an experimental 2D failure map, clustering main failure modes in the plane E/D versus W/D ratios, was generated, and its cluster variation was analyzed at each degree of aging
Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States
We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent
and thermal quantities in quantum systems. For time-dependent systems, we
modify a previous mapping to quantum circuits to significantly reduce the
computer resources required. This modification is based on a principle of
"observing" the system outside the light-cone. We apply this method to study
spin relaxation in systems started out of equilibrium with initial conditions
that give rise to very rapid entanglement growth. We also show that it is
possible to approximate time evolution under a local Hamiltonian by a quantum
circuit whose light-cone naturally matches the Lieb-Robinson velocity.
Asymptotically, these modified methods allow a doubling of the system size that
one can obtain compared to direct simulation. We then consider a different
problem of thermal properties of disordered spin chains and use quantum belief
propagation to average over different configurations. We test this algorithm on
one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds,
where we can compare to quantum Monte Carlo, and then we apply it to the study
of disordered, frustrated spin systems.Comment: 19 pages, 12 figure
Field-theory results for three-dimensional transitions with complex symmetries
We discuss several examples of three-dimensional critical phenomena that can
be described by Landau-Ginzburg-Wilson theories. We present an
overview of field-theoretical results obtained from the analysis of high-order
perturbative series in the frameworks of the and of the
fixed-dimension d=3 expansions. In particular, we discuss the stability of the
O(N)-symmetric fixed point in a generic N-component theory, the critical
behaviors of randomly dilute Ising-like systems and frustrated spin systems
with noncollinear order, the multicritical behavior arising from the
competition of two distinct types of ordering with symmetry O() and
O() respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200
- …
