5,742 research outputs found

    Empirical Research Plan: Effects of Sketching on Program Comprehension

    Get PDF
    Sketching is an important means of communication in software engineering practice. Yet, there is little research investigating the use of sketches. We want to contribute a better understanding of sketching, in particular its use during program comprehension. We propose a controlled experiment to investigate the effectiveness and efficiency of program comprehension with the support of sketches as well as what sketches are used in what way.Comment: 5 pages, 0 figures, Proc. International Conference on Agile Software Development (XP'16). Volume 251 of the book series Lecture Notes in Business Information Processing (LNBIP). Springer, 201

    On the melting of the nanocrystalline vortex matter in high-temperature superconductors

    Full text link
    Multilevel Monte Carlo simulations of the vortex matter in the highly-anisotropic high-temperature superconductor Bi2_2Sr2_2CaCu2_2O8_8 were performed. We introduced low concentration of columnar defects satisfying BϕBB_\phi\le B. Both the electromagnetic and Josephson interactions among pancake vortices were included. The nanocrystalline, nanoliquid and homogeneous liquid phases were identified in agreement with experiments. We observed the two-step melting process and also noted an enhancement of the structure factor just prior to the melting transition. A proposed theoretical model is in agreement with our findings.Comment: 4 figure

    Quantum fluctuations and glassy behavior: The case of a quantum particle in a random potential

    Full text link
    In this paper we expand our previous investigation of a quantum particle subject to the action of a random potential plus a fixed harmonic potential at a finite temperature T. In the classical limit the system reduces to a well-known ``toy'' model for an interface in a random medium. It also applies to a single quantum particle like an an electron subject to random interactions, where the harmonic potential can be tuned to mimic the effect of a finite box. Using the variational approximation, or alternatively, the limit of large spatial dimensions, together with the use the replica method, and are able to solve the model and obtain its phase diagram in the T(2/m)T - (\hbar^2/m) plane, where mm is the particle's mass. The phase diagram is similar to that of a quantum spin-glass in a transverse field, where the variable 2/m\hbar^2/m plays the role of the transverse field. The glassy phase is characterized by replica-symmetry-breaking. The quantum transition at zero temperature is also discussed.Comment: revised version, 23 pages, revtex, 5 postscript figures in a separate file figures.u

    Replica field theory for a polymer in random media

    Full text link
    In this paper we revisit the problem of a (non self-avoiding) polymer chain in a random medium which was previously investigated by Edwards and Muthukumar (EM). As noticed by Cates and Ball (CB) there is a discrepancy between the predictions of the replica calculation of EM and the expectation that in an infinite medium the quenched and annealed results should coincide (for a chain that is free to move) and a long polymer should always collapse. CB argued that only in a finite volume one might see a ``localization transition'' (or crossover) from a stretched to a collapsed chain in three spatial dimensions. Here we carry out the replica calculation in the presence of an additional confining harmonic potential that mimics the effect of a finite volume. Using a variational scheme with five variational parameters we derive analytically for d<4 the result R~(g |ln \mu|)^{-1/(4-d)} ~(g lnV)^{-1/(4-d)}, where R is the radius of gyration, g is the strength of the disorder, \mu is the spring constant associated with the confining potential and V is the associated effective volume of the system. Thus the EM result is recovered with their constant replaced by ln(V) as argued by CB. We see that in the strict infinite volume limit the polymer always collapses, but for finite volume a transition from a stretched to a collapsed form might be observed as a function of the strength of the disorder. For d<2 and for large V>V'~exp[g^(2/(2-d))L^((4-d)/(2-d))] the annealed results are recovered and R~(Lg)^(1/(d-2)), where L is the length of the polymer. Hence the polymer also collapses in the large L limit. The 1-step replica symmetry breaking solution is crucial for obtaining the above results.Comment: Revtex, 32 page

    NICMOS Observations of Low-Redshift Quasar Host Galaxies

    Get PDF
    We have obtained Near-Infrared Camera and Multi-Object Spectrometer images of 16 radio quiet quasars observed as part of a project to investigate the ``luminosity/host-mass limit.'' The limit results were presented in McLeod, Rieke, & Storrie-Lombardi (1999). In this paper, we present the images themselves, along with 1- and 2-dimensional analyses of the host galaxy properties. We find that our model-independent 1D technique is reliable for use on ground-based data at low redshifts; that many radio-quiet quasars live in deVaucouleurs-law hosts, although some of the techniques used to determine host type are questionable; that complex structure is found in many of the hosts, but that there are some hosts that are very smooth and symmetric; and that the nuclei radiate at ~2-20% of the Eddington rate based on the assumption that all galaxies have central black holes with a constant mass fraction of 0.6%. Despite targeting hard-to-resolve hosts, we have failed to find any that imply super-Eddington accretion rates.Comment: To appear in ApJ, 28 pages including degraded figures. Download the paper with full-resolutio figures from http://www.astro.wellesley.edu/kmcleod/mm.p

    Langevin Dynamics of the vortex matter two-stage melting transition in Bi_2Sr_2CaCu_2O8+δ_{8+\delta} in the presence of straight and of tilted columnar defects

    Full text link
    In this paper we use London Langevin molecular dynamics simulations to investigate the vortex matter melting transition in the highly anisotropic high-temperature superconductor material Bi_2Sr_2CaCu_2O8+δ_{8+\delta} in the presence of low concentration of columnar defects (CDs). We reproduce with further details our previous results obtained by using Multilevel Monte Carlo simulations that showed that the melting of the nanocrystalline vortex matter occurs in two stages: a first stage melting into nanoliquid vortex matter and a second stage delocalization transition into a homogeneous liquid. Furthermore, we report on new dynamical measurements in the presence of a current that identifies clearly the irreversibility line and the second stage delocalization transition. In addition to CDs aligned along the c-axis we also simulate the case of tilted CDs which are aligned at an angle with respect to the applied magnetic field. Results for CDs tilted by 4545^{\circ} with respect to c-axis show that the locations of the melting and delocalization transitions are not affected by the tilt when the ratio of flux lines to CDs remains constant. On the other hand we argue that some dynamical properties and in particular the position of the irreversibility line should be affected.Comment: 13 pages, 11 figure

    Directed polymers on a Cayley tree with spatially correlated disorder

    Full text link
    In this paper we consider directed walks on a tree with a fixed branching ratio K at a finite temperature T. We consider the case where each site (or link) is assigned a random energy uncorrelated in time, but correlated in the transverse direction i.e. within the shell. In this paper we take the transverse distance to be the hierarchical ultrametric distance, but other possibilities are discussed. We compute the free energy for the case of quenched disorder and show that there is a fundamental difference between the case of short range spatial correlations of the disorder which behaves similarly to the non-correlated case considered previously by Derrida and Spohn and the case of long range correlations which has a totally different overlap distribution which approaches a single delta function about q=1 for large L, where L is the length of the walk. In the latter case the free energy is not extensive in L for the intermediate and also relevant range of L values, although in the true thermodynamic limit extensivity is restored. We identify a crossover temperature which grows with L, and whenever T<T_c(L) the system is always in the low temperature phase. Thus in the case of long-ranged correlation as opposed to the short-ranged case a phase transition is absent.Comment: 23 pages, 1 figure, standard latex. J. Phys. A, accepted for publicatio

    Lorentz and CPT Invariance Violation In High-Energy Neutrinos

    Get PDF
    High-energy neutrino astronomy will be capable of observing particles at both extremely high energies and over extremely long baselines. These features make such experiments highly sensitive to the effects of CPT and Lorentz violation. In this article, we review the theoretical foundation and motivation for CPT and Lorentz violating effects, and then go on to discuss the related phenomenology within the neutrino sector. We describe several signatures which might be used to identify the presence of CPT or Lorentz violation in next generation neutrino telescopes and cosmic ray experiments. In many cases, high-energy neutrino experiments can test for CPT and Lorentz violation effects with much greater precision than other techniques.Comment: 27 pages, 8 figure

    Counting Giant Gravitons in AdS_3

    Full text link
    We quantize the set of all quarter BPS brane probe solutions in global AdS_3 \times S^3 \times T^4/K3 found in arxiv:0709.1168 [hep-th]. We show that, generically, these solutions give rise to states in discrete representations of the SL(2,R) WZW model on AdS_3. Our procedure provides us with a detailed description of the low energy 1/4 and 1/2 BPS sectors of string theory on this background. The 1/4 BPS partition function jumps as we move off the point in moduli space where the bulk theta angle and NS-NS fields vanish. We show that generic 1/2 BPS states are protected because they correspond to geodesics rather than puffed up branes. By exactly quantizing the simplest of the probes above, we verify our description of 1/4 BPS states and find agreement with the known spectrum of 1/2 BPS states of the boundary theory. We also consider the contribution of these probes to the elliptic genus and discuss puzzles, and their possible resolutions, in reproducing the elliptic genus of the symmetric product.Comment: 47 pages; (v2) references and minor clarifications adde

    A comparison of the optical properties of radio-loud and radio-quiet quasars

    Get PDF
    We have made radio observations of 87 optically selected quasars at 5 GHz with the VLA in order to measure the radio power for these objects and hence determine how the fraction of radio-loud quasars varies with redshift and optical luminosity. The sample has been selected from the recently completed Edinburgh Quasar Survey and covers a redshift range of 0.3 < z < 1.5 and an optical absolute magnitude range of -26.5 < M_{B} < -23.5 (h, q_{0} = 1/2). We have also matched up other existing surveys with the FIRST and NVSS radio catalogues and combined these data so that the optical luminosity-redshift plane is now far better sampled than previously. We have fitted a model to the probability of a quasar being radio-loud as a function of absolute magnitude and redshift and from this model infer the radio-loud and radio-quiet optical luminosity functions. The radio-loud optical luminosity function is featureless and flatter than the radio-quiet one. It evolves at a marginally slower rate if quasars evolve by density evolution, but the difference in the rate of evolutions of the two different classes is much less than was previously thought. We show, using Monte-Carlo simulations, that the observed difference in the shape of the optical luminosity functions can be partly accounted for by Doppler boosting of the optical continuum of the radio-loud quasars and explain how this can be tested in the future.Comment: 33 pages, 9 postscript figures, uses the AAS aaspp4 LaTeX style file, to appear in the 1 February 1999 issue of The Astrophysical Journa
    corecore