65 research outputs found

    Structural and energetic properties of nickel clusters: 2≤N≤1502 \le N \le 150

    Full text link
    The four most stable structures of NiN_N clusters with NN from 2 to 150 have been determined using a combination of the embedded-atom method in the version of Daw, Baskes and Foiles, the {\it variable metric/quasi-Newton} method, and our own {\it Aufbau/Abbau} method. A systematic study of energetics, structure, growth, and stability of also larger clusters has been carried through without more or less severe assumptions on the initial geometries in the structure optimization, on the symmetry, or on bond lengths. It is shown that cluster growth is predominantly icosahedral with islandsislands of {\it fcc}, {\it tetrahedral} and {\it decahedral} growth. For the first time in unbiased computations it is found that Ni147_{147} is the multilayer (third Mackay) icosahedron. Further, we point to an enhanced ability of {\it fcc} clusters to compete with the icosahedral and decahedral structures in the vicinity of N=79. In addition, it is shown that conversion from the {\it hcp}/anti-Mackay kind of icosahedral growth to the {\it fcc}/Mackay one occurs within a transition layer including several cluster sizes. Moreover, we present and apply different analytical tools in studying structural and energetic properties of such a large class of clusters. These include means for identifying the overall shape, the occurrence of atomic shells, the similarity of the clusters with, e.g., fragments of the {\it fcc} crystal or of a large icosahedral cluster, and a way of analysing whether the NN-atom cluster can be considered constructed from the (N−1)(N-1)-atom one by adding an extra atom. In addition, we compare in detail with results from chemical-probe experiment. Maybe the most central result is that first for clusters with NN above 80 general trends can be identified.Comment: 37 pages, 11 figure

    Distributive politics and regional development: assessing the territorial distribution of Turkey’s public investment

    Get PDF
    Turkey is often perceived as a country with low bureaucratic capacity and prone to political manipulation and ‘pork-barrel’. This article tests whether this is the case, by analysing the extent to which politics, rather than equity and efficiency criteria, have determined the geographical allocation of public investment across the 81 provinces of Turkey between 2005 and 2012. The results show that although the Turkish government has indeed channelled public expenditures to reward its core constituencies, socioeconomic factors remained the most relevant predictors of investment. Moreover, in contrast to official regional development policy principles, we uncover the concentration of public investment in areas with comparatively higher levels of development. We interpret this as the state bureaucracy’s intentional strategy of focussing on efficiency by concentrating resources on ‘the better off among the most in need’

    Intelligent Interference Management in UAV-Based HetNets

    No full text
    Unmanned aerial vehicles (UAVs) can play a key role in meeting certain demands of cellular networks. UAVs can be used not only as user equipment (UE) in cellular networks but also as mobile base stations (BSs) wherein they can either augment conventional BSs by adapting their position to serve the changing traffic and connectivity demands or temporarily replace BSs that are damaged due to natural disasters. The flexibility of UAVs allows them to provide coverage to UEs in hot-spots, at cell-edges, in coverage holes, or regions with scarce cellular infrastructure. In this work, we study how UAV locations and other cellular parameters may be optimized in such scenarios to maximize the spectral efficiency (SE) of the network. We compare the performance of machine learning (ML) techniques with conventional optimization approaches. We found that, on an average, a double deep Q learning approach can achieve 93.46% of the optimal median SE and 95.83% of the optimal mean SE. A simple greedy approach, which tunes the parameters of each BS and UAV independently, performed very well in all the cases that we tested. These computationally efficient approaches can be utilized to enhance the network performance in existing cellular networks

    Bencyclane as an anti-sickling agent

    No full text
    PubMedID: 8602994A vasodilating Ca2+ channel blocker, bencyclane, was used in 18 patients with homozygous sickle cell anaemia (SCD) to test the possible anti-sickling effect. With bencyclane intervention the Na+-K+ ATPase activity increased from 256 ± 29 to 331 ± 37 nmolPi/mg protein/h (P < 0.0001) and the Ca2+-Mg2+ ATPase level increased from 172 ± 12 to 222 ± 44 nmol Pi/mg protein/h (P < 0.0001). The intracytoplasmic Ca2+ concentration reduced from 3.5 ± 0.6 to 2.7 ± 0.25 µmol/l (P < 0.0001). The patient's blood contained fewer irreversibly sickled cells (ISCs) (a reduction from 21.4% to 14.4%) (P < 0.05). At the same time MCHC of the erythrocytes decreased from 34.5 to 33.0 g/dl (P < 0.05). Bencyclane appears to be a promising anti-sickling agent that can be used orally in SCD

    Motion planning in complex environments using closed-loop prediction

    No full text
    This paper describes the motion planning and control subsystems of Team MIT’s entry in the 2007 DARPA Grand Challenge. The novelty is in the use of closed-loop prediction in the framework of Rapidly-exploring Random Tree (RRT). Unlike the standard RRT, an input to the controller is sampled, followed by the forward simulation using the vehicle model and the controller to compute the predicted trajectory. This enables the planner to generate smooth trajectories much more efficiently, while the randomization allows the planner to explore cluttered environment. The controller consists of a Proportional-Integral speed controller and a nonlinear pure-pursuit steering controller, which are used both in execution and in the simulation-based prediction. The main advantages of the forward simulation are that it can easily incorporate any nonlinear control law and nonlinear vehicle dynamics, and the resulting trajectory is dynamically feasible. By using a stabilizing controller, it can handle vehicles with unstable dynamics. Several results obtained using MIT’s race vehicle demonstrate these features of the approach. I

    Cooperative Adaptive Cruise Control Implementation of Team Mekar at the Grand Cooperative Driving Challenge

    No full text
    This paper presents the cooperative adaptive cruise control implementation of Team Mekar at the Grand Cooperative Driving Challenge (GCDC). The Team Mekar vehicle used a dSpace microautobox for access to the vehicle controller area network bus and for control of the autonomous throttle intervention and the electric-motor-operated brake pedal. The vehicle was equipped with real-time kinematic Global Positioning System (RTK GPS) and an IEEE 802.11p modem installed in an onboard computer for vehicle-to-vehicle (V2V) communication. The Team Mekar vehicle did not have an original-equipment-manufacturer-supplied adaptive cruise control (ACC). ACC/Cooperative adaptive cruise control (CACC) based on V2V-communicated GPS position/velocity and preceding vehicle acceleration feedforward were implemented in the Team Mekar vehicle. This paper presents experimental and simulation results of the Team Mekar CACC implementation, along with a discussion of the problems encountered during the GCDC cooperative mobility runs
    • …
    corecore