342 research outputs found

    Non-Abelian pp-waves in D=4 supergravity theories

    Full text link
    The non-Abelian plane waves, first found in flat spacetime by Coleman and subsequently generalized to give pp-waves in Einstein-Yang-Mills theory, are shown to be 1/2 supersymmetric solutions of a wide variety of N=1 supergravity theories coupled to scalar and vector multiplets, including the theory of SU(2) Yang-Mills coupled to an axion \sigma and dilaton \phi recently obtained as the reduction to four-dimensions of the six-dimensional Salam-Sezgin model. In this latter case they provide the most general supersymmetric solution. Passing to the Riemannian formulation of this theory we show that the most general supersymmetric solution may be constructed starting from a self-dual Yang-Mills connection on a self-dual metric and solving a Poisson equation for e^\phi. We also present the generalization of these solutions to non-Abelian AdS pp-waves which allow a negative cosmological constant and preserve 1/4 of supersymmetry.Comment: Latex, 1+12 page

    The Conformal Penrose Limit and the Resolution of the pp-curvature Singularities

    Full text link
    We consider the exact solutions of the supergravity theories in various dimensions in which the space-time has the form M_{d} x S^{D-d} where M_{d} is an Einstein space admitting a conformal Killing vector and S^{D-d} is a sphere of an appropriate dimension. We show that, if the cosmological constant of M_{d} is negative and the conformal Killing vector is space-like, then such solutions will have a conformal Penrose limit: M^{(0)}_{d} x S^{D-d} where M^{(0)}_{d} is a generalized d-dimensional AdS plane wave. We study the properties of the limiting solutions and find that M^{(0)}_{d} has 1/4 supersymmetry as well as a Virasoro symmetry. We also describe how the pp-curvature singularity of M^{(0)}_{d} is resolved in the particular case of the D6-branes of D=10 type IIA supergravity theory. This distinguished case provides an interesting generalization of the plane waves in D=11 supergravity theory and suggests a duality between the SU(2) gauged d=8 supergravity of Salam and Sezgin on M^{(0)}_{8} and the d=7 ungauged supergravity theory on its pp-wave boundary.Comment: 20 pages, LaTeX; typos corrected, journal versio

    Kaluza-Klein electrically charged black branes in M-theory

    Get PDF
    We present a class of Kaluza-Klein electrically charged black p-brane solutions of ten-dimensional, type IIA superstring theory. Uplifting to eleven dimensions these solutions are studied in the context of M-theory. They can be interpreted either as a p+1 extended object trapped around the eleventh dimension along which momentum is flowing or as a boost of the following backgrounds: the Schwarzschild black (p+1)-brane or the product of the (10-p)-dimensional Euclidean Schwarzschild manifold with the (p+1)-dimensional Minkowski spacetime.Comment: 16 pages, uses latex and epsf macro, figures include

    Stringy Robinson-Trautman Solutions

    Get PDF
    A class of solutions of the low energy string theory in four dimensions is studied. This class admits a geodesic, shear-free null congruence which is non-twisting but in general diverging and the corresponding solutions in Einstein's theory form the Robinson-Trautman family together with a subset of the Kundt's class. The Robinson-Trautman conditions are found to be frame invariant in string theory. The Lorentz Chern-Simons three form of the stringy Robinson-Trautman solutions is shown to be always closed. The stringy generalizations of the vacuum Robinson-Trautman equation are obtained and three subclasses of solutions are identified. One of these subclasses exists, among all the dilatonic theories, only in Einstein's theory and in string theory. Several known solutions including the dilatonic black holes, the pp- waves, the stringy C-metric and certain solutions which correspond to exact conformal field theories are shown to be particular members of the stringy Robinson-Trautman family. Some new solutions which are static or asymptotically flat and radiating are also presented. The radiating solutions have a positive Bondi mass. One of these radiating solutions has the property that it settles down smoothly to a black hole state at late retarded times.Comment: Latex, 30 Pages, 1 Figure; to appear in Phys. Rev.

    The general form of supersymmetric solutions of N=(1,0) U(1) and SU(2) gauged supergravities in six dimensions

    Full text link
    We obtain necessary and sufficient conditions for a supersymmetric field configuration in the N=(1,0) U(1) or SU(2) gauged supergravities in six dimensions, and impose the field equations on this general ansatz. It is found that any supersymmetric solution is associated to an SU(2)R4SU(2)\ltimes \mathbb{R}^4 structure. The structure is characterized by a null Killing vector which induces a natural 2+4 split of the six dimensional spacetime. A suitable combination of the field equations implies that the scalar curvature of the four dimensional Riemannian part, referred to as the base, obeys a second order differential equation. Bosonic fluxes introduce torsion terms that deform the SU(2)R4SU(2)\ltimes\mathbb{R}^4 structure away from a covariantly constant one. The most general structure can be classified in terms of its intrinsic torsion. For a large class of solutions the gauge field strengths admit a simple geometrical interpretation: in the U(1) theory the base is K\"{a}hler, and the gauge field strength is the Ricci form; in the SU(2) theory, the gauge field strengths are identified with the curvatures of the left hand spin bundle of the base. We employ our general ansatz to construct new supersymmetric solutions; we show that the U(1) theory admits a symmetric Cahen-Wallach4×S2_4\times S^2 solution together with a compactifying pp-wave. The SU(2) theory admits a black string, whose near horizon limit is AdS3×S3AdS_3\times S_3. We also obtain the Yang-Mills analogue of the Salam-Sezgin solution of the U(1) theory, namely R1,2×S3R^{1,2}\times S^3, where the S3S^3 is supported by a sphaleron. Finally we obtain the additional constraints implied by enhanced supersymmetry, and discuss Penrose limits in the theories.Comment: 1+29 pages, late

    (1,0) superconformal theories in six dimensions and Killing spinor equations

    Full text link
    We solve the Killing spinor equations of 6-dimensional (1,0) superconformal theories in all cases. In particular, we derive the conditions on the fields imposed by the Killing spinor equations and demonstrate that these depend on the isotropy group of the Killing spinors. We focus on the models proposed by Samtleben et al in \cite{ssw} and find that there are solutions preserving 1,2, 4 and 8 supersymmetries. We also explore the solutions which preserve 4 supersymmetries and find that many models admit string and 3-brane solitons as expected from the M-brane intersection rules. The string solitons are smooth regulated by the moduli of instanton configurations.Comment: 26 page

    Colliding Plane Waves in Einstein-Maxwell-Dilaton Fields

    Get PDF
    Within the metric structure endowed with two orthogonal space-like Killing vectors a class of solutions of the Einstein-Maxwell-Dilaton field equations is presented. Two explicitly given sub-classes of solutions bear an interpretation as colliding plane waves in the low-energy limit of the heterotic string theory.Comment: 14 pages, LaTex; To appear in Phys. Rev.

    Correlation induced phonon softening in low density coupled bilayer systems

    Full text link
    We predict a possible phonon softening instability in strongly correlated coupled semiconductor bilayer systems. By studying the plasmon-phonon coupling in coupled bilayer structures, we find that the renormalized acoustic phonon frequency may be softened at a finite wave vector due to many-body local field corrections, particularly in low density systems where correlation effects are strong. We discuss experimental possibilities to search for this predicted phonon softening phenomenon.Comment: 4 pages with 2 figure

    On scattering off the extreme Reissner-Nordstr\"om black hole in N=2 supergravity

    Get PDF
    The scattering amplitudes for the perturbed fields of the N=2 supergravity about the extreme Reissner-Nordstr\"om black hole is examined. Owing to the fact that the extreme hole is a BPS state of the theory and preserves an unbroken global supersymmetry(N=1), the scattering amplitudes of the component fields should be related to each other. In this paper, we derive the formula of the transformation of the scattering amplitudes.Comment: 9 pages, revtex, no figures, a few typing errors correcte

    Vacua of M-theory and string theory

    Get PDF
    We argue that supersymmetric higher-dimension operators in the effective actions of M-theory and IIB string theory do not affect the maximally supersymmetric vacua: adS4×S7adS_4\times S^7 and adS7×S4adS_7\times S^4 in M-theory and adS5×S5adS_5\times S^5 in IIB string theory. All these vacua are described in superspace by a fixed point with all components of supertorsion and supercurvature being supercovariantly constant. This follows from 32 unbroken supersymmetries and allows us to prove that such vacua are exact.Comment: 16 pages, late
    corecore