We consider the exact solutions of the supergravity theories in various
dimensions in which the space-time has the form M_{d} x S^{D-d} where M_{d} is
an Einstein space admitting a conformal Killing vector and S^{D-d} is a sphere
of an appropriate dimension. We show that, if the cosmological constant of
M_{d} is negative and the conformal Killing vector is space-like, then such
solutions will have a conformal Penrose limit: M^{(0)}_{d} x S^{D-d} where
M^{(0)}_{d} is a generalized d-dimensional AdS plane wave. We study the
properties of the limiting solutions and find that M^{(0)}_{d} has 1/4
supersymmetry as well as a Virasoro symmetry. We also describe how the
pp-curvature singularity of M^{(0)}_{d} is resolved in the particular case of
the D6-branes of D=10 type IIA supergravity theory. This distinguished case
provides an interesting generalization of the plane waves in D=11 supergravity
theory and suggests a duality between the SU(2) gauged d=8 supergravity of
Salam and Sezgin on M^{(0)}_{8} and the d=7 ungauged supergravity theory on its
pp-wave boundary.Comment: 20 pages, LaTeX; typos corrected, journal versio