163 research outputs found

    Requirements engineering within a large-scale security-oriented research project : lessons learned

    Get PDF
    Requirements engineering has been recognized as a fundamental phase of the software engineering process. Nevertheless, the elicitation and analysis of requirements are often left aside in favor of architecture-driven software development. This tendency, however, can lead to issues that may affect the success of a project. This paper presents our experience gained in the elicitation and analysis of requirements in a large-scale security-oriented European research project, which was originally conceived as an architecture-driven project. In particular, we illustrate the challenges that can be faced in large-scale research projects and consider the applicability of existing best practices and off-the-shelf methodologies with respect to the needs of such projects. We then discuss how those practices and methods can be integrated into the requirements engineering process and possibly improved to address the identified challenges. Finally, we summarize the lessons learned from our experience and the benefits that a proper requirements analysis can bring to a project

    Requirements engineering within a large-scale security-oriented research project : lessons learned

    Get PDF
    Requirements engineering has been recognized as a fundamental phase of the software engineering process. Nevertheless, the elicitation and analysis of requirements are often left aside in favor of architecture-driven software development. This tendency, however, can lead to issues that may affect the success of a project. This paper presents our experience gained in the elicitation and analysis of requirements in a large-scale security-oriented European research project, which was originally conceived as an architecture-driven project. In particular, we illustrate the challenges that can be faced in large-scale research projects and consider the applicability of existing best practices and off-the-shelf methodologies with respect to the needs of such projects. We then discuss how those practices and methods can be integrated into the requirements engineering process and possibly improved to address the identified challenges. Finally, we summarize the lessons learned from our experience and the benefits that a proper requirements analysis can bring to a project

    Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations

    Get PDF
    Killing vector fields in three dimensions play important role in the construction of the related spacetime geometry. In this work we show that when a three dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the ricci tensor. Using this property we give ways of solving the field equations of Topologically Massive Gravity (TMG) and New Massive Gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three dimensional symmetric tensors of the geometry, the ricci and einstein tensors, their covariant derivatives at all orders, their products of all orders are completely determined by the Killing vector field and the metric. Hence the corresponding three dimensional metrics are strong candidates of solving all higher derivative gravitational field equations in three dimensions.Comment: 25 pages, some changes made and some references added, to be published in Classical and Quantum Gravit

    Type N Spacetimes as Solutions of Extended New Massive Gravity

    Full text link
    We study algebraic type N spacetimes in the extended new massive gravity (NMG), considering both the Born-Infeld model (BI-NMG) and the model of NMG with any finite order curvature corrections. We show that for these spacetimes, the field equations of BI-NMG take the form of the massive (tensorial) Klein-Gordon type equation, just as it happens for ordinary NMG. This fact enables us to obtain the type N solution to BI-NMG, utilizing the general type N solution of NMG, earlier found in our work. We also obtain type N solutions to NMG with all finite order curvature corrections and show that, in contrast to BI-NMG, this model admits the critical point solutions, which are counterparts of "logarithmic" AdS pp-waves solutions of NMG.Comment: 6 pages, twocolumn REVTe

    The General Type N Solution of New Massive Gravity

    Get PDF
    We find the most general algebraic type N solution with non-vanishing scalar curvature, which comprises all type N solutions of new massive gravity in three dimensions. We also give the special forms of this solution, which correspond to certain critical values of the topological mass. Finally, we show that at the special limit, the null Killing isometry of the spacetime is restored and the solution describes AdS pp-waves.Comment: 7 pages, twocolumn REVTeX; minor changes, new references adde

    A Nonliearly Dispersive Fifth Order Integrable Equation and its Hierarchy

    Full text link
    In this paper, we study the properties of a nonlinearly dispersive integrable system of fifth order and its associated hierarchy. We describe a Lax representation for such a system which leads to two infinite series of conserved charges and two hierarchies of equations that share the same conserved charges. We construct two compatible Hamiltonian structures as well as their Casimir functionals. One of the structures has a single Casimir functional while the other has two. This allows us to extend the flows into negative order and clarifies the meaning of two different hierarchies of positive flows. We study the behavior of these systems under a hodograph transformation and show that they are related to the Kaup-Kupershmidt and the Sawada-Kotera equations under appropriate Miura transformations. We also discuss briefly some properties associated with the generalization of second, third and fourth order Lax operators.Comment: 11 pages, LaTex, version to be published in Journal of Nonlinear Mathematical Physics, has expanded discussio

    All Static Circularly Symmetric Perfect Fluid Solutions of 2+1 Gravity

    Get PDF
    Via a straightforward integration of the Einstein equations with cosmological constant, all static circularly symmetric perfect fluid 2+1 solutions are derived. The structural functions of the metric depend on the energy density, which remains in general arbitrary. Spacetimes for fluids fulfilling linear and polytropic state equations are explicitly derived; they describe, among others, stiff matter, monatomic and diatomic ideal gases, nonrelativistic degenerate fermions, incoherent and pure radiation. As a by--product, we demonstrate the uniqueness of the constant energy density perfect fluid within the studied class of metrics. A full similarity of the perfect fluid solutions with constant energy density of the 2+1 and 3+1 gravities is established.Comment: revtex4, 8 page

    Stability of Gravitational and Electromagnetic Geons

    Get PDF
    Recent work on gravitational geons is extended to examine the stability properties of gravitational and electromagnetic geon constructs. All types of geons must possess the property of regularity, self-consistency and quasi-stability on a time-scale much longer than the period of the comprising waves. Standard perturbation theory, modified to accommodate time-averaged fields, is used to test the requirement of quasi-stability. It is found that the modified perturbation theory results in an internal inconsistency. The time-scale of evolution is found to be of the same order in magnitude as the period of the comprising waves. This contradicts the requirement of slow evolution. Thus not all of the requirements for the existence of electromagnetic or gravitational geons are met though perturbation theory. From this result it cannot be concluded that an electromagnetic or a gravitational geon is a viable entity. The broader implications of the result are discussed with particular reference to the problem of gravitational energy.Comment: 40 pages, 5 EPS figures, uses overcite.st

    Neutral perfect fluids of Majumdar-type in general relativity

    Full text link
    We consider the extension of the Majumdar-type class of static solutions for the Einstein-Maxwell equations, proposed by Ida to include charged perfect fluid sources. We impose the equation of state ρ+3p=0\rho+3p=0 and discuss spherically symmetric solutions for the linear potential equation satisfied by the metric. In this particular case the fluid charge density vanishes and we locate the arising neutral perfect fluid in the intermediate region defined by two thin shells with respective charges QQ and Q-Q. With its innermost flat and external (Schwarzschild) asymptotically flat spacetime regions, the resultant condenser-like geometries resemble solutions discussed by Cohen and Cohen in a different context. We explore this relationship and point out an exotic gravitational property of our neutral perfect fluid. We mention possible continuations of this study to embrace non-spherically symmetric situations and higher dimensional spacetimes.Comment: 9 page

    Colliding Plane Waves in Einstein-Maxwell-Dilaton Fields

    Get PDF
    Within the metric structure endowed with two orthogonal space-like Killing vectors a class of solutions of the Einstein-Maxwell-Dilaton field equations is presented. Two explicitly given sub-classes of solutions bear an interpretation as colliding plane waves in the low-energy limit of the heterotic string theory.Comment: 14 pages, LaTex; To appear in Phys. Rev.
    corecore