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1. Introduction

Recently, Bergshoeff, Hohm and Townsend formulated a new
dynamical theory of massive gravity in three dimensions [1]. The
theory is now called new massive gravity (NMG) and is described
by the Einstein–Hilbert (EH) action complemented with a particu-
lar higher-derivative correction term. The latter provides propagat-
ing degrees of freedom in the theory, thereby curing dynamically
barren property of general relativity in three dimensions [2]. In
contrast to topologically massive gravity (TMG), formulated a long
ago by Deser, Jackiw and Templeton [3,4], the theory of NMG
preserves parity. The associated wave equation contains fourth-
order derivatives of metric perturbations, representing a physical
massive graviton with two polarization states. In TMG, the addi-
tion of the higher-derivative Chern–Simons term to the EH action
violates parity, but it also makes the theory dynamical with a
single propagating massive mode. On the other hand, there ex-
ist some similarities between TMG and NMG theories. First of
all, the linearized behavior of the latter in the Minkowski back-
ground is similar to that of TMG, resulting in a unitary theory
of two propagating massive graviton modes as long as one uses
the reverse sign for the EH term in the action [1,5]. Attempts
to extend the NMG theory to all higher dimensions have re-
vealed that only the three-dimensional model is unitary in the tree
level [6,7].

It is unfortunate that unitarity of both TMG and NMG theo-
ries requires to reverse the usual sign of the EH term in the total

* Corresponding author.
E-mail address: aliev@gursey.gov.tr (A.N. Aliev).
0370-2693 © 2010 Elsevier B.V.
doi:10.1016/j.physletb.2010.09.044

Open access under CC BY license. 
action. For instance, due to this peculiarity the mass of the BTZ
black holes [8] becomes negative that in turn makes unsatisfac-
tory the quantum description in context of the AdS/CFT correspon-
dence. In the case of TMG, significant progress on this route was
achieved recently in [9]. It was shown that at a “chiral” point, de-
termined by a certain critical value of the topological mass, the
bulk gravitons disappear and the BTZ black holes have nonnega-
tive masses. That is, one obtains a unitary chiral quantum theory
of gravity with the usual sign of the EH term, which is a dual
of two-dimensional conformal field theory (CFT2) on the bound-
ary. This remarkable result has renewed the interest in TMG with
the hope of finding other stable vacua for a consistent formulation
of quantum gravity in three dimensions [10–13]. In particular, the
authors of [12] performed the Petrov–Segre type algebraic classifi-
cation of exact solutions to TMG, showing that almost all existing
in the literature homogeneous space solutions locally reduce to ei-
ther type D, biaxially squashed AdS3 solutions [14–16] or type N,
AdS pp-waves solutions [10,17–20]. New Kundt type solutions of
TMG were found in [13].

A similar wave of activity has also appeared in NMG [21–26].
It was found that NMG admits AdS3 (BTZ), warped AdS3 black
holes [1,21] as well as AdS-wave solutions [22]. A new class of
asymptotically AdS3 black hole solutions to NMG with special val-
ues of the cosmological term has been discussed in [23,24]. Some
special cases of Kundt spacetimes and homogeneous space solu-
tions to NMG were also considered in [27,28], respectively. In the
quantum context, contrary to the case of TMG, the reconciliation
of incompatibility of bulk/boundary theories, in the sense of their
unitarity, still remains unsatisfactory, though a number of critical
relations between the AdS3 radius and the mass scale do exist as
well [23,29–31]. This fact motivates one to look for all possible
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exact solutions of NMG that could provide stable vacua for satis-
factory quantum aspects of the theory.

In a recent paper [32], we began an exhaustive programme for
studying exact solutions to NMG. In particular, we found a simple
framework that provided mapping all known Petrov–Segre types
D and N exact solutions of TMG into NMG. Meanwhile, it should
be emphasized that TMG is a strongly constrained theory as it
does not admit static solutions besides “trivial” Einstein solutions
[33,34]. However, NMG is a much richer theory that admits solu-
tions which are absent in TMG [23,32].

In this Letter, we continue the programme of [32] and find the
most general solution that describes all algebraic type N space-
times of NMG. In Section 2 we briefly recall the field equations
of cosmological NMG in terms of a first-order differential opera-
tor (resembling a Dirac type operator) acting on the traceless Ricci
tensor. In Section 3 we introduce a triad basis consisting of two
null and one spacelike vectors and show that for type N geome-
tries, the covariant derivatives of these vectors are determined only
by three scalar functions. In Section 4 we derive the general form
of the spacetime metric with a single unknown function of two
variables, which obeys a second-order linear differential equation.
In Section 5 we obtain the most general algebraic type N solution
and discuss its some special limits of interest.

2. The field equations

The field equations of NMG were obtained in [1] by varying the
action

S = 1

16πG

∫
d3x

√−g

(
R − 2λ − 1

m2
K

)
, (1)

with respect to the spacetime metric. Here R = gμν Rμν is the Ricci
scalar, λ is a cosmological term, m is a mass parameter and

K = Rμν Rμν − 3

8
R2. (2)

In a recent paper [32], it was shown that if one defines a first-
order differential operator as

/DΦμν = 1

2

(
εμ

αβ∇βΦνα + εν
αβ∇βΦμα

)
, (3)

where Φμν is a symmetric tensor, then its action on the traceless
Ricci tensor

Sμν = Rμν − 1

3
gμν R, (4)

yields

/D Sμν = −Cμν. (5)

Here Cμν is the symmetric, traceless and covariantly constant Cot-
ton tensor defined as

Cμν = εμ
αβ∇α

(
Rνβ − 1

4
gνβ R

)
. (6)

With the quantities /D and Sμν , the field equations of NMG with
a cosmological term can be put in the form of the massive Klein–
Gordon type equation with curvature-squared source term. Thus,
one obtains the field equations of NMG in the form

(
/D2 − m2)Sμν = Tμν, (7)

where the traceless source term is given by

Tμν = Sμρ Sρ
ν − R

Sμν − 1
gμν Sαβ Sαβ. (8)
12 3
This equation is also accompanied by the equation

Sμν Sμν + m2 R − R2

24
= 6m2λ, (9)

which is an analogue of the trace equation in [1]. For a source
tensor given by the relation

Tμν = κ Sμν, (10)

where κ is a function of the scalar curvature, which is fulfilled for
algebraic types D and N spacetimes, instead of Eq. (7), we have

/D2 Sμν = μ2 Sμν, (11)

with

μ2 = m2 + κ. (12)

We recall that in this description the field equations of cosmologi-
cal TMG acquire the Dirac type form

/D Sμν = μSμν. (13)

Here μ is the mass parameter of TMG. Further details of this de-
scription of NMG can be found in [32]. We note that in (6) and in
what follows, the Levi-Civita tensor εμαβ is given by the relation
εμαβ = √−gεμαβ and we use the convention ε012 = 1.

For algebraic types D and N spacetimes such a description turns
out to be very powerful for finding exact solutions to NMG. This
has been demonstrated in [32] by mapping all known algebraic
types D and N exact solutions of TMG into NMG as well as pre-
senting new examples of such solutions, which are only inherent
in NMG. In the following, we further demonstrate the advantages
of this description and find the most general type N solution to
NMG.

3. The type N geometries

We begin with introducing a triad basis of real vectors,
{lμ,nμ,mμ} such that

lμnμ = 1, mμmμ = 1 (14)

with all other contractions vanishing identically. That is, we have
two null vectors lμ and nμ and one spacelike unit vector mμ . The
latter vector with

mμ = εμνσ lνnσ (15)

provides an orientation of the three-dimensional manifold. Clearly,
we also have

lμ = εμνσ mνlσ , nμ = εμνσ nνmσ . (16)

The spacetime metric written in terms of the basis vectors has the
form

gμν = 2l(μnν) + mμmν . (17)

We now recall that for type N spacetimes, in the Petrov–Segre clas-
sification of three-dimensional spacetimes, the canonical form of
the traceless Ricci tensor is given by

Sμν = lμlν, (18)

where lμ is a null vector (see for instance, [12,35,36]). With this
expression, Eq. (9) yields

λ = −ν2
(

1 + ν2

2

)
. (19)
4m
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Here, for a convenience in the following, we have introduced
ν2 = −R/6, which defines the case of a negative scalar curvature.
Equivalently, one can also define it as ν = √−Λ, where Λ is the
usual cosmological constant. Meanwhile, using Eq. (10) we have

μ2 = m2 + ν2

2
, (20)

instead of (12).
Next, from the contracted Bianchi identity, Sμν

;ν = 0, where
the semicolon stands for covariant differentiation, we find the re-
lation

lν
;ν lμ + lνlμ;ν = 0. (21)

This enables one to establish the general representation for the
covariant derivative of the vector lμ in the form

lμ;ν = αlμlν + βlμmν + γ (2mμmν − lμnν) + σmμlν, (22)

where the coefficients of the expansion are functions of spacetime
and γ = lμ;μ . Using this expression, with Eqs. (15) and (16) in
mind, one can easily calculate the action of the operator /D on the
traceless Ricci tensor Sμν . We find that

/D Sμν = (σ − 2β)lμlν − 4γ l(μmν). (23)

Comparing this equation with that given in (13), we see that for all
type N solutions of TMG the function γ must be zero that, along
with (21), yields

lμ
;μ = 0, lν lμ;ν = 0. (24)

That is, the null vector lμ forms a congruence of expansion-free
null geodesics. In other words, all algebraic type N solutions of
TMG are Kundt spacetimes [13].

Next, we shall show that the above statement remains true for
the case of NMG as well. For this purpose, it is convenient to begin
by assuming that γ �= 0. Then, the use of the Lorentz transforma-
tion of the basis vectors

lμ → lμ, mμ → mμ − f lμ, nμ → nμ + f mμ − 1

2
f 2lμ,

(25)

where f is a real function, enables one to set σ = 2β in the new
basis. As a consequence, we have

lμ;ν = αlμlν + β(lμmν + 2mμlν) + γ (2mμmν − lμnν). (26)

The use of this expression, along with the orthogonality condition
lμmμ = 0, yields the equation

mμ;ν = −2βnμlν − 2γ nμmν + lμxν, (27)

where xμ is a real vector. It is also straightforward to show that

/D Sμν = −4γ l(μmν). (28)

With Eqs. (26), (27) and (28) we are able to calculate the explicit
form of /D2 Sμν , which turns out to involve the term proportional
to (lμγ;μ − γ 2)(gμν − 3mμmν). Clearly, this term must vanish, as
a consequence of the field equations in (11). Thus, we arrive at the
equation

lμγ;μ − γ 2 = 0. (29)

We now use the fact that for any vector xμ ,

xν;μ;ν − (
x ;ν
ν

)
;μ = Rμνxν =

(
Sμν + R

gμν

)
xν, (30)
3

where we have used Eq. (4). Replacing here xν by lν and then
contracting the result with lμ , we obtain that

lμγ;μ + 3γ 2 = 0. (31)

Combining now Eqs. (29) and (31), we see that γ = 0, that con-
tradicts with our initial assumption γ �= 0, i.e. we again arrive
at equations in (24). Thus, all algebraic type N solutions of NMG are
Kundt spacetimes.

Next, it is important to establish for these spacetimes the most
suitable representation of the covariant derivatives of the basis
vectors. We first note that

lμ∂μβ = 0, lμ∂μσ = 0, (32)

where, with (24) in mind, the first equation is obtained when us-
ing expression (22) in (30) for xν = lν and contracting the result
with the basis vector mμ , whereas the second equation follows
from the vanishing divergence of Eq. (23). Equations in (32) allow
us to reduce Eq. (22) into the form

lμ;ν = αlμlν + β(lμmν − lνmμ) (33)

by means of the Lorentz transformation of the triad given by lμ →
k1/2lμ , nμ → k−1/2nμ , mμ → mμ , provided that lμ∂μk = 0. We see
that Eq. (33) involves only two functions α and β . However, the
canonical form of the traceless Ricci tensor now acquires an extra
function k,

Sμν = klμlν, (34)

not violating the conditions in (24). Using the fact that expression
(33) remains invariant under the Lorentz transformation (25), one
can choose the vector mμ to be commuting with the vector lμ in
the sense of their Lie bracket,

[l,m] = 0. (35)

This in turn allows us to specify the covariant derivative of the
vector m in the form

mμ;ν = τ lμlν + β(lμnν + lνnμ) + χ lμmν . (36)

With Eqs. (33) and (36) one can easily write out the covariant
derivative of mμ as follows

nμ;ν = −αnμlν − β(nμmν + mμnν) − τmμlν − χmμmν . (37)

We note that the Lie bracket in (35) is preserved with respect to
transformation (25), provided that the function f obeys the condi-
tion lμ∂μ f = 0. On the other hand, using Eqs. (33), (36) and (37)
successively in (30), after some manipulations, we also find that
lμ∂μχ = 0. With these two conditions in mind, one can discard
the function χ in (36) and (37) by means of the Lorentz trans-
formation in (25). Thus, we find that for the type N geometries, the
covariant derivatives of the basis vectors are determined only by three
scalar functions.

4. The construction of the metric

It is straightforward to show that the associated determining
equations for the scalar functions α, β and τ are obtained from
Eq. (30) by an appropriate using expressions (33), (34), (36) and
(37) in it. As a consequence, we have the set of simple equations

∂ρτ = −k − 4βτ , (38)

∂vτ = ∂ρα + 2αβ = nμ∂μβ, (39)

∂ρβ = −∂vα = ν2 − β2, (40)

∂vβ = 0, (41)
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which are easily solved. Here we have used the definitions l =
lμ∂μ = ∂v and m = mμ∂μ = ∂ρ . From Eq. (40), we immediately see
that for ν2 = β2, the function α is constant along the null vector l.
Thus, the null vector determines a null Killing vector that can be
seen from (33), discarding the function α by a Lorentz transfor-
mation. This case corresponds to a general AdS pp-waves solution
[22] (see also below, Section 5).

For ν2 �= β2, the most general solutions to the above set of
equations are given by

α = (
ν2 − β2)[−v + βb(u) + c(u)

]
, (42)

τ = (
ν2 − β2)2[

vb(u) + g(u,ρ)
]
, (43)

where b(u) and c(u) are arbitrary functions of the coordinate u,
the function g(u,ρ) obeys the equation

∂ρ g + k

(ν2 − β2)2
= 0, (44)

and β is determined by Eqs. (40) and (41), which admit the fol-
lowing solutions

β = ν tanh(νρ), (45)

and

β = ν coth(νρ). (46)

Here we have used a coordinate transformation to drop a redun-
dant function of u.

Next, using the Lie brackets

[n, l] = αl, [n,m] = 2βn + τ l, (47)

established by means of Eqs. (33), (36) and (37) as well as Eq. (39),
we find the following representation for the null vector

n = nμ∂μ = (
ν2 − β2)[A∂v + b(u)∂ρ + ∂u

]
, (48)

where A is given by

A = 1

2

[
v2 − a(u,ρ)

] − v
[
βb(u) + c(u)

]
, (49)

and the function a(u,ρ) is determined by the equation

∂ρa = 2
(
ν2 − β2)g. (50)

Taking once again the derivative of this equation with respect
to ρ and combining the result with Eqs. (38) and (44), we ob-
tain the second-order linear inhomogeneous differential equation
for a(u,ρ)

∂2
ρa + 2β∂ρa = − 2k

ν2 − β2
. (51)

The associated dual 1-forms

lμ dxμ = 1

ν2 − β2
du, nμ dxμ = dv − A du,

mμ dxμ = dρ − b(u)du, (52)

define the metric

ds2 = 2

ν2 − β2
du(dv − A du) + [

dρ − b(u)du
]2

, (53)

that by means of the coordinate transformation

v → v + βb(u) + c(u), (54)

can also be put in the form
ds2 = dρ2 + 2

ν2 − β2
du dv + 1

ν2 − β2

[
a(u,ρ) − v2]du2. (55)

In obtaining this expression, we have used the invariance of
Eqs. (44) and (50) with respect to the transformation a → a +
βg1(u)+ g2(u), that removes two redundant functions in the met-
ric. Thus, the most general metric for algebraic type N geometries
is characterized by a single unknown function a(u,ρ) governed by
Eq. (51). Clearly, this metric does not admit a null Killing vector
field.

The remaining step is to find the explicit form of this function.
In doing so, as it follows from Eqs. (51), we first need to know
the function k. For this purpose, let us calculate the action of the
operator /D on the tensor in (34). We find that

/D Sμν = −zSμν, (56)

where

z = 3β + ∂ρ ln k. (57)

Comparing this equation with that in (13), we see that for z = ±μ,
we arrive at TMG theory and the corresponding type N solu-
tions recover those found in [13]. These solutions of TMG can be
mapped into NMG using the prescription given in [32].

It is easy to see that the action of the operator /D on Eq. (56)
yields

/D2 Sμν = (
∂ρ z + z2)Sμν, (58)

that, with the field equations of NMG given in (11), leads to the
equation

∂ρ z = μ2 − z2. (59)

The nontrivial solutions of this equation are given by

z = μ tanh
[
μρ + h(u)

]
, (60)

and

z = μ coth
[
μρ + h(u)

]
, (61)

where we keep an arbitrary function h(u) as one cannot gauge out
it simultaneously with that entering into the solutions for β (see
Eqs. (45) and (46)).

Next, combining Eqs. (57) and (59) and taking into account
Eq. (40), we find that

k = −1

2

(
ν2 − β2)(ν2 − β2

μ2 − z2

)1/2

F (u), (62)

where F (u) is an arbitrary function.

5. The general solution

Substituting now the expression of k given above into Eq. (51),
making use of solutions (45), (46) and (60), (61), we can solve it
for the metric function a(u,ρ).

We first consider the generic case μ2 �= ν2 and begin with β =
ν tanh(νρ). Then, for the function z given in Eqs. (60) and (61), the
solutions of Eq. (51) are respectively given by

a = cosh[μρ + h(u)]
cosh(νρ)

f (u) + tanh(νρ) f1(u) + f2(u), (63)

and

a = sinh[μρ + h(u)]
f (u) + tanh(νρ) f1(u) + f2(u). (64)
cosh(νρ)
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Since h(u) is an arbitrary function, these two solutions can be
“glued” together to give the single solution

a = 1

cosh(νρ)

[
cosh(μρ)F1(u) + sinh(μρ)F2(u)

+ cosh(νρ) f1(u) + sinh(νρ) f2(u)
]
, (65)

which involves four arbitrary functions of u. We recall that this
solution corresponds to the case of negative scalar curvature. How-
ever, making an analytical continuation ν → iν or taking the limit
ν → 0, we obtain the solutions corresponding to the positive or
zero values of the scalar curvature, respectively. It is also impor-
tant to note that, as it follows from Eq. (20), the quantity μ2 can
take on both negative and zero values. The associated solutions are
also recovered by (65) when performing an analytical continuation
μ → iμ or taking the limit μ → 0.

Similarly, for β = ν coth(νρ) and μ2 �= ν2, we have the solution

a = 1

sinh(νρ)

[
cosh(μρ)F1(u) + sinh(μρ)F2(u)

+ cosh(νρ) f1(u) + sinh(νρ) f2(u)
]
. (66)

As in the previous case, one can make appropriate analytical con-
tinuations to include the case of positive or zero scalar curvature
as well as the case of negative or zero μ2.

It is interesting to note that the most general solution, compris-
ing all these solutions, is given by

ds2 = dρ2 + 2 du dv

ν2 − β2
+

[
Z(u,ρ) − v2

ν2 − β2

]
du2, (67)

where the metric function has the form

Z(u,ρ) = 1√
ν2 − β2

[
cosh(μρ)F1(u) + sinh(μρ)F2(u)

+ cosh(νρ) f1(u) + sinh(νρ) f2(u)
]

(68)

and β is given as in either (45) or (46). We recall that ν is related
to the cosmological term λ as given in (19) and the general met-
ric does not admit a null Killing vector field. For F2(u) = f1(u) =
f2(u) = 0 and β in (45), this solution reduces to that obtained
in [32]. We see that the general solution involves two extra func-
tions f1(u) and f2(u). In fact, one of these functions can be dis-
carded by means of coordinate transformations. In order to show
this, it is convenient to write Eq. (68) in the following alternative
form

Z(u,ρ) = cosh(μρ)F1(u) + sinh(μρ)F2(u)√
ν2 − β2

+ h1(u) + βh2(u)

ν2 − β2
. (69)

Here h1(u) → f1(u) and h2(u) → f2(u) for β given in (45),
whereas h1(u) → f2(u) and h2(u) → f1(u) for β given in (46).
Passing now to the new coordinates v → vG(u) + H(u), such that
∂u G = G(u)H(u), and du → du/G(u), it is straightforward to see
that one can eliminate h1(u) by choosing G(u) and H(u). As a re-
sult, we have

Z(u,ρ) = cosh(μρ)F1(u) + sinh(μρ)F2(u)√
ν2 − β2

+ sinh(2νρ)F3(u). (70)

Thus, the most general solution is characterized by three arbitrary
functions. In the following, for some future purposes, we keep both
functions f1(u) and f2(u). We proceed with the special forms of
(67), which are of interest as well.
(i) μ2 = ν2 (or, as it follows from (20), m2 = ν2/2). In this case,
taking properly the limit of (68) or equivalently solving Eq. (51),
with the explicit forms of β and z given above, we find that

Z(u,ρ) = 1√
ν2 − β2

{
cosh(μρ)

[
ρ F1(u) + f1(u)

]

+ sinh(μρ)
[
ρ F2(u) + f2(u)

]}
. (71)

(ii) μ2 = 0 (or, as it follows from (20), m2 = −ν2/2). Then, from
Eq. (68) it immediately follows that

Z(u,ρ) = 1√
ν2 − β2

[
F1(u) + ρ F2(u)

+ cosh(νρ) f1(u) + sinh(νρ) f2(u)
]
. (72)

Again, one can discard the redundant function f1(u) in Eqs. (71)
and (72) by means of coordinate transformations.

(iii) β2 → ν2. In this case, making the coordinate transforma-
tion v → (ν2 − β2)v , one can put the metric in (67) in the form

ds2 = dρ2 + 2 du dv − 4βv dρ du

+ [
Z(u,ρ) − (

ν2 − β2)v2]du2. (73)

We see that in the limit β2 → ν2, the term proportional to v2 dis-
appears. That is, the Killing isometry of the spacetime is restored
and the vector ∂v becomes a null Killing vector. This in turn means
that the resulting metric must describe AdS pp-waves. Indeed, re-
defining once again the coordinate v as v → e2νρ v , we arrive at
the metric

ds2 = dρ2 + 2e2νρ du dv + [
eνρ cosh(μρ)F1(u)

+ eνρ sinh(μρ)F2(u) + e2νρ f1(u) + f2(u)
]

du2, (74)

where, in the contrary with the general case (67), both functions
f1(u) and f2(u) can be gauged out by means of coordinate trans-
formations. This metric is nothing but the AdS pp-waves solution
of NMG that was earlier found in [22].

(iv) Finally, for F1(u) = ±F2(u) = f (u), the solution in (67) re-
covers that obtained from the TMG case (see Refs. [13,32]). The
same remains true for solution (71) as well.

Thus, we have the most general solution given in (67), which
comprises all algebraic type N spacetimes of NMG.

6. Conclusion

A novel description of NMG in three dimensions, given in our
previous work [32], turns out to be a very powerful tool for find-
ing exact solutions to the theory. In this Letter, we have further
demonstrated the advantages of this formalism. Describing three-
dimensional algebraic type N spacetimes in terms of a triad basis
(with two null vectors and one spacelike vector), we have shown
that all such solutions of NMG are Kundt spacetimes. Using this
property along with freedoms, provided by the Lorentz symmetries
underlying the system, we have found that the covariant deriva-
tives of the basis vectors are in general determined only by three
scalar functions, which obey a chain of simple equations.

For algebraic type N geometries, we have obtained the general
form of the spacetime metric with a single unknown function of
two variables. Remarkably, this function is governed by a second-
order linear inhomogeneous differential equation. Finally, solving
the linear differential equation, we have found the most general al-
gebraic type N solution with non-vanishing scalar curvature, which
comprises all type N solutions to the theory of NMG. We have also
considered some special cases of interest.
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