336 research outputs found

    Accelerated Levi-Civita-Bertotti-Robinson Metric in D-Dimensions

    Get PDF
    A conformally flat accelerated charge metric is found in an arbitrary dimension DD. It is a solution of the Einstein-Maxwell-null fluid with a cosmological constant in D4D \ge 4 dimensions. When the acceleration is zero our solution reduces to the Levi-Civita-Bertotti-Robinson metric. We show that the charge loses its energy, for all dimensions, due to the acceleration.Comment: Latex File, 12 page

    Closed timelike curves and geodesics of Godel-type metrics

    Get PDF
    It is shown explicitly that when the characteristic vector field that defines a Godel-type metric is also a Killing vector, there always exist closed timelike or null curves in spacetimes described by such a metric. For these geometries, the geodesic curves are also shown to be characterized by a lower dimensional Lorentz force equation for a charged point particle in the relevant Riemannian background. Moreover, two explicit examples are given for which timelike and null geodesics can never be closed.Comment: REVTeX 4, 12 pages, no figures; the Introduction has been rewritten, some minor mistakes corrected, many references adde

    G\"odel Type Metrics in Three Dimensions

    Get PDF
    We show that the G{\" o}del type Metrics in three dimensions with arbitrary two dimensional background space satisfy the Einstein-perfect fluid field equations. There exists only one first order partial differential equation satisfied by the components of fluid's velocity vector field. We then show that the same metrics solve the field equations of the topologically massive gravity where the two dimensional background geometry is a space of constant negative Gaussian curvature. We discuss the possibility that the G{\" o}del Type Metrics to solve the Ricci and Cotton flow equations. When the vector field uμu^{\mu} is a Killing vector field we finally show that the stationary G{\" o}del Type Metrics solve the field equations of the most possible gravitational field equations where the interaction lagrangian is an arbitrary function of the electromagnetic field and the curvature tensors.Comment: 17 page

    Godel-type Metrics in Various Dimensions II: Inclusion of a Dilaton Field

    Full text link
    This is the continuation of an earlier work where Godel-type metrics were defined and used for producing new solutions in various dimensions. Here a simplifying technical assumption is relaxed which, among other things, basically amounts to introducing a dilaton field to the models considered. It is explicitly shown that the conformally transformed Godel-type metrics can be used in solving a rather general class of Einstein-Maxwell-dilaton-3-form field theories in D >= 6 dimensions. All field equations can be reduced to a simple "Maxwell equation" in the relevant (D-1)-dimensional Riemannian background due to a neat construction that relates the matter fields. These tools are then used in obtaining exact solutions to the bosonic parts of various supergravity theories. It is shown that there is a wide range of suitable backgrounds that can be used in producing solutions. For the specific case of (D-1)-dimensional trivially flat Riemannian backgrounds, the D-dimensional generalizations of the well known Majumdar-Papapetrou metrics of general relativity arise naturally.Comment: REVTeX4, 17 pp., no figures, a few clarifying remarks added and grammatical errors correcte

    Gurses' Type (b) Transformations are Neighborhood-Isometries

    Full text link
    Following an idea close to one given by C. G. Torre (private communication), we prove that Riemannian spaces (M,g) and (M,h) that are related by a Gurses type (b) transformation [M. Gurses, Phys. Rev. Lett. 70, 367 (1993)] or, equivalently, by a Torre-Anderson generalized diffeomorphism [C. G. Torre and I. M. Anderson, Phys. Rev. Lett. xx, xxx (1993)] are neighborhood-isometric, i.e., every point x in M has a corresponding diffeomorphism phi of a neighborhood V of x onto a generally different neighborhood W of x such that phi*(h|W) = g|V.Comment: 10 pages, LATEX, FJE-93-00

    Photon rockets moving arbitrarily in any dimension

    Full text link
    A family of explicit exact solutions of Einstein's equations in four and higher dimensions is studied which describes photon rockets accelerating due to an anisotropic emission of photons. It is possible to prescribe an arbitrary motion, so that the acceleration of the rocket need not be uniform - both its magnitude and direction may vary with time. Except at location of the point-like rocket the spacetimes have no curvature singularities, and topological defects like cosmic strings are also absent. Any value of a cosmological constant is allowed. We investigate some particular examples of motion, namely a straight flight and a circular trajectory, and we derive the corresponding radiation patterns and the mass loss of the rockets. We also demonstrate the absence of "gravitational aberration" in such spacetimes. This interesting member of the higher-dimensional Robinson-Trautman class of pure radiation spacetimes of algebraic type D generalises the class of Kinnersley's solutions that has long been known in four-dimensional general relativity.Comment: Text and figures modified (22 pages, 8 figures). To appear in the International Journal of Modern Physics D, Vol. 20, No..

    Lienard-Wiechert Potentials in Even Dimensions

    Get PDF
    The motion of point charged particles is considered in an even dimensional Minkowski space-time. The potential functions corresponding to the massless scalar and the Maxwell fields are derived algorithmically. It is shown that in all even dimensions particles lose energy due to acceleration

    Colliding gravitational plane waves in dilaton gravity

    Get PDF
    Collision of plane waves in dilaton gravity theories and low energy limit of string theory is considered. The formulation of the the problem and some exact solutions are presented
    corecore