43 research outputs found

    CenH3/CID Incorporation Is Not Dependent on the Chromatin Assembly Factor CHD1 in Drosophila

    Get PDF
    CHD1 is a SNF2-related ATPase that is required for the genome-wide incorporation of variant histone H3.3 in the paternal pronucleus as well as in transcriptionally active nuclei in Drosophila embryos. The S. pombe and vertebrate orthologs of CHD1 have been implicated in the assembly of the centromeric histone H3 variant CenH3CENP-A, which occurs in a DNA replication-independent manner. Here, we examined whether CHD1 participates in the assembly of CenH3CID in Drosophila. In contrast to the findings in fission yeast and vertebrate cells, our evidence clearly argues against such a role for CHD1 in Drosophila. CHD1 does not localize to centromeres in either S2 cells or developing fly embryos. Down-regulation of CHD1 in S2 cells by RNAi reveals unchanged levels of CenH3CID at the centromeres. Most notably, ablation of functional CHD1 in Chd1 mutant fly embryos does not interfere with centromere and kinetochore assembly, as the levels and localization of CenH3CID, CENP-C and BubR1 in the mutant embryos remain similar to those seen in wild-type embryos. These results indicate that Drosophila CHD1 has no direct function in the incorporation of the centromeric H3 variant CenH3CID into chromatin. Therefore, centromeric chromatin assembly may involve different mechanisms in different organisms

    The NA49 large acceptance hadron detector

    Get PDF
    The NA49 detector is a wide acceptance spectrometer for the study of hadron production in p+p, p+A, and A+A collisions at the CERN SPS. The main components are 4 large volume TPCs for tracking and particle identification via dE/dxdE/dx. TOF scintillator arrays complement particle identification. Calorimeters for transverse energy determination and triggering, a detector for centrality selection in p+A collisions, and beam definition detectors complete the set-up. A description of all detector components is given with emphasis on new technical realizations. Performance and operational experience are discussed in particular with respect to the high track density environment of central Pb+Pb collisions

    Learning long-term dependencies in segmented-memory recurrent neural networks with backpropagation of error

    No full text
    In general, recurrent neural networks have difficulties in learning long-term dependencies. The segmented-memory recurrent neural network (SMRNN) architecture together with the extended real-time recurrent learning (eRTRL) algorithm was proposed to circumvent this problem. Due to its computational complexity eRTRL becomes impractical with increasing network size. Therefore, we introduce the less complex extended backpropagation through time (eBPTT) for SMRNN together with a layer-local unsupervised pre-training procedure. A comparison on the information latching problem showed that eRTRL is better able to handle the latching of information over longer periods of time, even though eBPTT guaranteed a better generalisation when training was successful. Further, pre-training significantly improved the ability to learn long-term dependencies with eBPTT. Therefore, the proposed eBPTT algorithm is suited for tasks that require big networks where eRTRL is impractical. The pre-training procedure itself is independent of the supervised learning algorithm and can improve learning in SMRNN in general

    Inhibitory activity of myelin-associated glycoprotein on sensory neurons is largely independent of NgR1 and NgR2 and resides within Ig-Like domains 4 and 5.

    Get PDF
    Myelin-associated glycoprotein (MAG) is a sialic acid binding Ig-like lectin (Siglec) which has been characterized as potent myelin-derived inhibitor of neurite outgrowth. Two members of the Nogo-receptor (NgR) family, NgR1 and NgR2, have been identified as neuronal binding proteins of MAG. In addition, gangliosides have been proposed to bind to and confer the inhibitory activity of MAG on neurons. In this study, we investigated the individual contribution of NgRs and gangliosides to MAG-mediated inhibition of sensory neurons derived from dorsal root ganglia (DRG) of ngr1, ngr2 or ngr1/ngr2 deletion mutants. We found no disinhibition of neurite growth in the absence of either NgR1 or NgR2. Sensory neurons deficient for both NgR proteins displayed only a moderate reduction of MAG-mediated inhibition of neurite growth. If treated with Vibrio cholerae neuraminidase (VCN), inhibition by MAG is further attenuated but still not annulled. Thus, disrupting all known protein and ganglioside receptors for MAG in sensory neurons does not fully abolish its inhibitory activity pointing to the existence of as yet unidentified receptors for MAG. Moreover, by employing a variety of protein mutants, we identified the Ig-like domains 4 or 5 of MAG as necessary and sufficient for growth arrest, whereas abolishing MAG's ability to bind to sialic acid did not interfere with its inhibitory activity. These findings provide new insights into the inhibitory function of MAG and suggest similarities but also major differences in MAG inhibition between sensory and central nervous system (CNS) neurons
    corecore