155 research outputs found
One hundred years after the discovery of insulin and glucagon:the history of tumors and hyperplasias that hypersecrete these hormones
One century ago, in 1922, Frederick G Banting, Charles H Best, James B Collip and John J R Macleod first published their experiments resulting in the isolation of a hypoglycemic factor, named insulin, from a solution extract from a dog’s pancreas. One year later, in 1923, a hyperglycemic factor named glucagon was isolated by Charles P Kimball and John R Murlin. In the following years, it could be demonstrated that pancreatic islet alpha- and beta-cell neoplasms and hyperplasias could inappropriately secrete excessive amounts of these two hormones. This review is a sequel to the discovery of insulin and glucagon and introduces the history of this fascinating group of neuroendocrine neoplasms and hyperplasias of the pancreas.</p
Pancreatic intraductal papillary-mucinous neoplasms: a new and evolving entity
For a long time, intraductal tumors of the pancreas were neglected because they were misdiagnosed as mucinous cystadenocarcinoma, ordinary ductal adenocarcinoma, or chronic pancreatitis. Only in recent years have they been recognized as clinical and pathological entities. Most common are the intraductal papillary-mucinous neoplasms. Although they show an adenoma-carcinoma sequence, they have proved to have a more favorable prognosis than ductal adenocarcinoma, when resected in a preinvasive state. Recently, it has become clear that they constitute a heterogeneous group with at least four subtypes. Their stratification reveals that the various intraductal papillary-mucinous neoplasm subtypes have different biological properties with different prognostic implications
Od karcinoida do biološki i prognostički značajne klasifikacije neuroendokrinih tumora probavnog trakta i gušterače
Although well established in the medical terminology, the term carcinoid is no longer adequate to cover the entire morphological and biological spectrum of neoplasms of the disseminated neuroendocrine cell system. Instead of "carcinoid" the WHO classification published in 2000 therefore uses the general terms "neuroendocrine tumor" and "neuroendocrine carcinoma". In this review we describe a classification of gastroenteropancreatic neuroendocrine tumors based on the WHO criteria. We also classify and comment on the most important tumor entities. On the basis of localization and of various morphological and biological criteria we distinguish between benign neuroendocrine tumors, tumors with uncertain malignant potential, and tumors showing low grade and high grade malignancy.Iako je dobro poznat u medicinskoj terminologiji, pojam karcinoid nije više dovoljan da bi pokrio eitav morfološki i biološki spektar neoplazma diseminiranog neuroendokrinog staničnog sustava. Stoga se u klasifikaciji što ju je 2000. godine objavila SZO umjesto "karcinoidi" rabe opći pojmovi "neuroendokrini tumor" i "neuroendokrini karcinom". U ovom preglednom članku opisujemo klasifikaciju gastroenteropankreatičnih neuroendokrinih tumora, koja se temelji na kriterijima SZO. Također dajemo klasifikaciju i primjerene napomene o najvažnijim tumorskim entitetima. Na osnovi lokalizacije i različitih morfoloških i bioloških kriterija razlikujemo benigne neuroendokrine tumore, tumore neodređenog malignog potencijala, te tumore koji pokazuju nizak i visok stupanj malignosti
Characterisation of a transgenic mouse expressing R122H human cationic trypsinogen
BACKGROUND: The R122H mutation of the cationic trypsinogen was found in patients with hereditary pancreatitis. A transgenic animal carrying this mutation could be useful as a genetic model system of pancreatitis. METHODS: Mice transgenic for the human R122H cationic trypsinogen were generated using the -205 fragment of the rat elastase promoter. The presence of the transgene was assayed in the DNA, in pancreatic mRNA and in zymogen granule lysates. Serum levels of amylase, lipase and cytokines (MCP-1, IL-6) were monitored and the histological appearance of the tissue was investigated. Pancreatitis was induced by 7 hourly injections of 50 μg/kg cerulein. The procedure was repeated twice weekly for 10 consecutive weeks. The animals were sacrificed 24 (n = 8) and 48 hours (n = 8) after the first injection and at the end of the whole treatment (n = 7). RESULTS: The transgene was detected at the genomic level and in pancreatic mRNA. The corresponding protein was found in low amounts in zymogen granule lysates. R122H mice showed elevated pancreatic lipase, but there was no spontaneous development of pancreatitis within 18 months. After induction of pancreatitis, levels of lipase (after 24 hours) and amylase (after 48 hours) were higher in R122H mice compared to controls. Repeated treatment with cerulein resulted in a slightly more severe pancreatitis in R122H animals. Amylase, lipase, and the cytokine levels were similar to controls. CONCLUSION: The R122H transgenic mouse failed to develop a spontaneous pancreatitis but a repeatedly provoked cerulein-induced pancreatitis led to a slightly more severe pancreatitis. The rather small difference in comparison to controls could be due to the low expression of the transgene in the mouse pancreas
Mesenchymal/non-epithelial mimickers of neuroendocrine neoplasms with a focus on fusion gene-associated and SWI/SNF-deficient tumors
Mimickers of neuroendocrine neoplasms (NEN) include a number of important pitfall tumors. Here, we describe our experience with mesenchymal mimics of NENs to illustrate their spectrum and draw the attention particularly to a group of mesenchymal/non-epithelial neoplasms (MN) that combine epithelioid histology with neuroendocrine (NE-) features and peculiar genetic abnormalities. In a consultation series of 4498 cases collected between 2009 and 2021, 2099 neoplasms expressing synaptophysin and/or chromograninA were reviewed and analyzed. A total of 364 (18%) were diagnosed as non-NENs, while the remaining tumors were NEN. The group of mesenchymal/non-epithelial neoplasms with NE-features (MN-NE) included 31/364 (8%) cases. These mostly malignant neoplasms showed an epithelioid morphology. While all but one tumor expressed synaptophysin, mostly patchy, only 10/29 (34%) co-expressed chromograninA. A total of 13/31 (42%) of the MN-NE showed EWSR1-related gene fusions (6 Ewing sarcomas, 5 clear cell sarcomas, and 1 desmoplastic small round cell tumor, 1 neoplasm with FUS-CREM gene fusion) and 7 (23%) were SWI/SNF (SMARCB1 or SMARCA4)-deficient neoplasms. The remaining MN-NE included synovial sarcoma, sclerosing epithelioid mesenchymal neoplasm, melanoma, alveolar soft part sarcoma, solitary fibrous tumor, and chordoma. A total of 27/31 MN-NE were from the last 8 years, and 6 of them were located in the pancreas. Eleven MN-NE were initially diagnosed as neuroendocrine carcinomas (NECs). MN-NE with epithelioid features play an increasing role as mimickers of NECs. They mostly belong to tumors with gene fusions involving the EWSR1 gene, or with SWI/SNF complex deficiency. Synaptophysin expression is mostly patchy and chromograninA expression is infrequent in MN-NE of this series and data extracted from literature
ARX, PDX1, ISL1 and CDX2 expression distinguishes five subgroups of PanNETs with correlations to histology, hormone expression and outcome.
Many pancreatic neuroendocrine tumors (PanNETs) fall into two major prognostic subtypes based on DAXX/ATRX induced ALT phenotype and alpha and beta cell-like epigenomic profiles. However, these PanNETs are still flanked by other PanNETs that do not fit into either subtype. Furthermore, despite advanced genotyping, PanNETs are generally not well characterized in terms of their histological and hormonal phenotype. We aimed to identify new subgroups of PanNETs by extending the currently used transcription factor signatures and to investigate their correlation with histological, hormonal molecular and prognostic findings. 185 PanNETs (non-functioning 165, functioning 20) resected between 1996 and 2023 were classified into five subgroups (A1, A2, B, C, D) by cluster analysis based on ARX, PDX1, ISL1 and CDX2 expression and correlated with trabecular vs. solid histology, expression of insulin, glucagon, PP, somatostatin, serotonin, gastrin, calcitonin, ACTH, DAXX/ATRX, MEN1 and ALT status by FISH, and disease-free survival (DFS). A1 (46%, ARX+/ISL1+/PDX1-/CDX2-) and A2 (15%, ARX+/ISL1+/PDX1+/CDX2-) showed trabecular histology and glucagon/ PP expression, with A2 also showing gastrin expression. B (18%, PDX1+/ISL1+/ARX-/CDX2-) showed solid histology, insulin and somatostatin expression (p<0.001). It included all insulinomas and had the best outcome (p<0.01). C (15%, ARX-/PDX1-/ISL1-/CDX2-) showed solid histology and frequent expression of serotonin, calcitonin und ACTH. D (5%, PDX1+/CDX2+/ISL1-/ARX-) showed solid histology, expressed ACTH/serotonin and was an independent poor prognosticator (p<0.01). Differential expression of ARX, PDX1, ISL1 and CDX2 stratified PanNETs into five subgroups with different histology, hormone expression and outcome. Subgroups A1 and A2 resembled the alpha cell-like type, subgroup B the beta cell-like type. Subgroup C with almost a no transcription factor signature was unclear in cell lineage, while the PDX+/CDX2+ signature of subgroup D suggested a pancreatic/intestinal cell lineage. Assigning PanNETs to the subgroups may help to establish the diagnosis, predict the outcome, and guide the treatment
Intra-abdominal EWSR1/FUS-CREM-rearranged malignant epithelioid neoplasms: two cases of an emerging aggressive entity with emphasis on misleading immunophenotype
CREB family (CREB1, ATF1, and CREM) gene fusions are defining markers in diverse mesenchymal neoplasms (clear cell sarcoma, angiomatoid fibrous histiocytoma, and others). However, neoplasms harboring EWSR1-CREM/FUS-CREM fusions are rare and poorly characterized. We describe two cases (55-year-old male with 7.5 cm renal mass and 32-year-old female with 5.5 cm mesenteric mass) illustrating their misleading immunophenotypes. Histologically, both showed eosinophilic and focally clear epithelioid cells arranged into sheets, nests, and trabeculae. Immunohistochemistry showed ALK, EMA, and AE1/AE3 immunoreactivity suggesting ALK-rearranged renal cell carcinoma (Case 1) and coexpression of keratin, EMA, synaptophysin, and chromogranin-A, suggesting neuroendocrine neoplasm (Case 2). Targeted RNA sequencing revealed EWSR1-CREM (Case 1) and FUS-CREM (Case 2) fusions. These cases add to the spectrum of CREM fusion-positive intra-abdominal epithelioid neoplasms. Their unusual immunophenotype and unexpected sites represent major pitfalls, underline a wide differential diagnosis, and emphasize the value of molecular testing in correctly diagnosing them
Neuroendocrine Differentiation in Conventional Colorectal Adenocarcinomas: Incidental Finding or Prognostic Biomarker?
Background Colorectal mixed adenoneuroendocrine carcinomas (MANECs) are clinically highly aggressive neoplasms. MANECs are composed of variable adenocarcinoma components combined with morphologically distinct neuroendocrine carcinoma components, which are confirmed by synaptophysin immunohistochemistry, the gold standard marker of a neuroendocrine differentiation. However, the biological behavior of adenocarcinomas that express synaptophysin but do not show a typical neuroendocrine morphology remains unclear. Methods We investigated synaptophysin expression in 1002 conventional colorectal adenocarcinomas and correlated the results with clinicopathological characteristics and patient survival and compared the survival characteristics of synaptophysin expression groups to MANECs. Results Synaptophysin expression in conventional colorectal adenocarcinomas was associated with a shortened disease-free survival (p = 0.037), but not with overall survival or disease-specific survival (DSS) in univariate analyses and without any survival impact in multivariate analyses. Patients with "true" MANECs, on the other hand, showed a significantly shorter survival than all conventional adenocarcinomas with or without synaptophysin expression in uni- and multivariate analyses (e.g., multivariate DSS: p < 0.001, HR: 5.20). Conclusions Our study demonstrates that synaptophysin expression in conventional colorectal adenocarcinomas, in contrast to MANECs, is not associated with a significantly poorer clinical outcome when compared to adenocarcinomas without synaptophysin expression. Furthermore, our data suggest that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs, also strongly arguing that synaptophysin testing should be reserved for carcinomas with an H&E morphology suggestive of a neuroendocrine differentiation.Simple Summary Colorectal MANECs are highly aggressive carcinomas defined by a distinct neuroendocrine morphology and positivity for synaptophysin in the neuroendocrine component. It is unclear whether a neuroendocrine differentiation in conventional adenocarcinomas without a suggestive morphology is of clinical relevance. We tested 1002 conventional colorectal carcinomas with a non-neuroendocrine morphology for synaptophysin expression and correlated the results with clinicopathological characteristics as well as patient survival and compared the survival characteristics of synaptophysin expression groups to those of true MANECs. We found no survival differences between synaptophysin expression groups within conventional colorectal adenocarcinomas. MANECs, on the other hand, showed significantly worse survival characteristics. Our data suggest that synaptophysin expression in conventional colorectal adenocarcinomas is of minor prognostic relevance and that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs. Abstract Background: Colorectal mixed adenoneuroendocrine carcinomas (MANECs) are clinically highly aggressive neoplasms. MANECs are composed of variable adenocarcinoma components combined with morphologically distinct neuroendocrine carcinoma components, which are confirmed by synaptophysin immunohistochemistry, the gold standard marker of a neuroendocrine differentiation. However, the biological behavior of adenocarcinomas that express synaptophysin but do not show a typical neuroendocrine morphology remains unclear. Methods: We investigated synaptophysin expression in 1002 conventional colorectal adenocarcinomas and correlated the results with clinicopathological characteristics and patient survival and compared the survival characteristics of synaptophysin expression groups to MANECs. Results: Synaptophysin expression in conventional colorectal adenocarcinomas was associated with a shortened disease-free survival (p = 0.037), but not with overall survival or disease-specific survival (DSS) in univariate analyses and without any survival impact in multivariate analyses. Patients with “true” MANECs, on the other hand, showed a significantly shorter survival than all conventional adenocarcinomas with or without synaptophysin expression in uni- and multivariate analyses (e.g., multivariate DSS: p < 0.001, HR: 5.20). Conclusions: Our study demonstrates that synaptophysin expression in conventional colorectal adenocarcinomas, in contrast to MANECs, is not associated with a significantly poorer clinical outcome when compared to adenocarcinomas without synaptophysin expression. Furthermore, our data suggest that conventional adenocarcinomas with a diffuse synaptophysin expression should not be classified as MANECs, also strongly arguing that synaptophysin testing should be reserved for carcinomas with an H&E morphology suggestive of a neuroendocrine differentiation
PITX2 as a sensitive and specific marker of midgut neuroendocrine tumors: results from a cohort of 1157 primary neuroendocrine neoplasms
As Neuroendocrine Tumors (NET) often present as metastatic lesions, immunohistochemical assignment to a site of origin is one of the most important tasks in their pathological assessment. Since a fraction of NETs eludes the typical expression profiles of their primary localization, additional sensitive and specific markers are required to improve diagnostic certainty.
We investigated the expression of the transcription factor Pituitary Homeobox 2 (PITX2) in a large-scale cohort of 909 NET and 248 Neuroendocrine Carcinomas (NEC) according to the Immunoreactive Score (IRS) and correlated PITX2 expression groups with general tumor groups and localization of the primary.
PITX2 expression (all expression groups) was highly sensitive (98.1%) for midgut-derived NET, but not perfectly specific, as non-midgut NET (especially pulmonary/duodenal) were quite frequently weak or moderately positive. The specificity rose to 99.5% for a midgut origin of NET if only a strong PITX2 expression was considered, which was found in only 0.5% (one pancreatic/one pulmonary) of non-midgut NET. In metastases of midgut-derived NET, PITX2 was expressed in all cases (87.5% strong, 12.5% moderate), while CDX2 was negative or only weakly expressed in 31.3% of the metastases. In NEC, a fraction of cases (14%) showed a weak or moderate PITX2 expression, which was not associated with a specific tumor localization.
Our study independently validates PITX2 as a very sensitive and specific immunohistochemical marker of midgut-derived NET in a very large collective of Neuroendocrine Neoplasms. Therefore, our data argue towards implementation into diagnostic panels applied for NET as a first line midgut marker
StellaTUM: current consensus and discussion on pancreatic stellate cell research
The field of pancreatic stellate cell (PSC) biology is very young, as the essential in-vitro tools to study these cells (ie, methods to isolate and culture PSC) were only developed as recently as in 1998. Nonetheless, there has been an exponential increase in research output in this field over the past decade, with numerous research groups around the world focusing their energies into elucidating the biology and function of these cells. It is now well established that PSC are responsible for producing the stromal reaction (fibrosis) of two major diseases of the pancreas—chronic pancreatitis and pancreatic cancer. Despite exponentially increasing data, the methods for studying PSC remain variable. Although within individual laboratories methods are consistent, different methodologies used by various research groups make it difficult to compare results and conclusions. This article is not a review article on the functions of PSC. Instead, members of the Pancreatic Star Alliance (http://www.pancreaticstaralliance.com) discuss here and consolidate current knowledge, to outline and delineate areas of consensus or otherwise (eg, with regard to methodological approaches) and, more importantly, to identify essential directions for future research
- …