4,122 research outputs found
What does it take to evolve behaviorally complex organisms?
What genotypic features explain the evolvability of organisms that have to accomplish many different tasks? The genotype of behaviorally complex organisms may be more likely to encode modular neural architectures because neural modules dedicated to distinct tasks avoid neural interference, i.e., the arrival of conflicting messages for changing the value of connection weights during learning. However, if the connection weights for the various modules are genetically inherited, this raises the problem of genetic linkage: favorable mutations may fall on one portion of the genotype encoding one neural module and unfavorable mutations on another portion encoding another module. We show that this can prevent the genotype from reaching an adaptive optimum. This effect is different from other linkage effects described in the literature and we argue that it represents a new class of genetic constraints. Using simulations we show that sexual reproduction can alleviate the problem of genetic linkage by recombining separate modules all of which incorporate either favorable or unfavorable mutations. We speculate that this effect may contribute to the taxonomic prevalence of sexual reproduction among higher organisms. In addition to sexual recombination, the problem of genetic linkage for behaviorally complex organisms may be mitigated by entrusting evolution with the task of finding appropriate modular architectures and learning with the task of finding the appropriate connection weights for these architectures
Exact gravitational lensing and rotation curve
Based on the geodesic equation in a static spherically symmetric metric we
discuss the rotation curve and gravitational lensing. The rotation curve
determines one function in the metric without assuming Einstein's equations.
Then lensing is considered in the weak field approximation of general
relativity. From the null geodesics we derive the lensing equation and
corrections to it.Comment: 12 pages, 1 figur
Cell-type phylogenetics and the origin of endometrial stromal cells
SummaryA challenge of genome annotation is the identification of genes performing specific biological functions. Here, we propose a phylogenetic approach that utilizes RNA-seq data to infer the historical relationships among cell types and to trace the pattern of gene-expression changes on the tree. The hypothesis is that gene-expression changes coincidental with the origin of a cell type will be important for the function of the derived cell type. We apply this approach to the endometrial stromal cells (ESCs), which are critical for the initiation and maintenance of pregnancy. Our approach identified well-known regulators of ESCs, PGR and FOXO1, as well as genes not yet implicated in female fertility, including GATA2 and TFAP2C. Knockdown analysis confirmed that they are essential for ESC differentiation. We conclude that phylogenetic analysis of cell transcriptomes is a powerful tool for discovery of genes performing cell-type-specific functions
Histological investigations on the thyroid glands of marine mammals (Phoca vitulina, Phocoena phocoena) and the possible implications of marine pollution
In 1988 and 1989, thousands of harbor seals (Phoca vitulina) died in the North Sea from phocine distemper infection. The morphology of thyroid glands from 40 harbor seals found dead on the North Sea coastlines of Schleswig-Holstein, Federal Republic of Germany, during an epizootic of phocine distemper, was compared with the morphology of thyroid glands from five healthy harbor seals collected in Iceland. Thyroid glands from seven harbor porpoises (Phocoena phocoena) found dead in 1990 on the North Sea coastlines also were evaluated. Colloid depletion and fibrosis were found in the thyroid glands of harbor seals which died during the epizootic, but not in animals from Iceland. Thyroid glands of the porpoises showed similar lesions, but to a lesser degree, than those observed in the North Sea seals
Practical scheme for a light-induced gauge field in an atomic Bose gas
We propose a scheme to generate an Abelian gauge field in an atomic gas using
two crossed laser beams. If the internal atomic state follows adiabatically the
eigenstates of the atom-laser interaction, Berry's phase gives rise to a vector
potential that can nucleate vortices in a Bose gas. The present scheme operates
even for a large detuning with respect to the atomic resonance, making it
applicable to alkali-metal atoms without significant heating due to spontaneous
emission. We test the validity of the adiabatic approximation by integrating
the set of coupled Gross-Pitaevskii equations associated with the various
internal atomic states, and we show that the steady state of the interacting
gas indeed exhibits a vortex lattice, as expected from the adiabatic gauge
field.Comment: 4 pages, 3 figure
Cavity-induced temperature control of a two-level system
We consider a two-level atom interacting with a single mode of the
electromagnetic field in a cavity within the Jaynes-Cummings model. Initially,
the atom is thermal while the cavity is in a coherent state. The atom interacts
with the cavity field for a fixed time. After removing the atom from the cavity
and applying a laser pulse the atom will be in a thermal state again. Depending
on the interaction time with the cavity field the final temperature can be
varied over a large range. We discuss how this method can be used to cool the
internal degrees of freedom of atoms and create heat baths suitable for
studying thermodynamics at the nanoscale
- …