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SUMMARY

A challenge of genome annotation is the identifica-
tion of genes performing specific biological func-
tions. Here, we propose a phylogenetic approach
that utilizes RNA-seq data to infer the historical rela-
tionships among cell types and to trace the pattern of
gene-expression changes on the tree. The hypothe-
sis is that gene-expression changes coincidental
with the origin of a cell type will be important for
the function of the derived cell type. We apply this
approach to the endometrial stromal cells (ESCs),
which are critical for the initiation and maintenance
of pregnancy. Our approach identified well-known
regulators of ESCs, PGR and FOXO1, as well as
genes not yet implicated in female fertility, including
GATA2 and TFAP2C. Knockdown analysis confirmed
that they are essential for ESC differentiation. We
conclude that phylogenetic analysis of cell transcrip-
tomes is a powerful tool for discovery of genes per-
forming cell-type-specific functions.
INTRODUCTION

One essential aspect of animal development is cellular differen-

tiation. It is known that this process often proceeds in a hierarchi-

cal manner, where totipotent cells sequentially commit to fates of

more-restricted developmental potential (Graf and Enver, 2009).

Thus, the relationship of cell types in ontogeny is expected to

form a tree-like structure, although it is also possible that the

relationship among cell types can be better represented as net-

works of alternative developmental pathways.

A possible evolutionary explanation for the hierarchical rela-

tionships among cell types is the so-called ‘‘sister-cell-type

model’’ proposed by Detlev Arendt (Arendt, 2008). According

to this model, novel cell types arise as pairs (sister cell types)

from an ancestral cell type by sub-specialization. If we assume

this mode of cell type origination to be true, then the evolutionary

relatedness of cell types is expected to be, at least initially,

congruent with the ontogenetic hierarchy of cellular differentia-

tion. This is so because, according to the model, the develop-
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ment of sister cell types is the same up to the last stages of

differentiation (Arendt, 2008). In contrast, if new cell types fre-

quently evolve by combining regulatory modules from distantly

related cell types, there would be no expectation of a hierarchical

set of relationships among cell types. In this paper, we call the

hypothetical tree-like relationship of cell types in ontogeny and

phylogeny a ‘‘cell-type tree’’ and reconstruct the cell-type tree

from transcriptomic data.

Hierarchical developmental relationships among cell types

have traditionally been elucidated through a series of laborious

experiments involving in vitro differentiation of cell types from

various stem cells (Bryder et al., 2006; Pronk et al., 2007; Villad-

sen et al., 2007). In recent years, with the advent of technologies

to obtain genome-wide gene-expression data such as microar-

ray or RNA-seq, attempts have been made to characterize the

relationships among cell types using high-throughput transcrip-

tomic information (Alizadeh et al., 2000; Novershtern et al., 2011;

Sugino et al., 2006). With genome-wide gene-expression data

and a phylogenetic hypothesis about the relationship among

the cell types in hand, we are able to identify a series of gene-

expression gain and loss events during the evolution of the

cell types. These events can be reconstructed with standard

methods of ancestral state reconstruction (Cunningham et al.,

1998). Moreover, the inferred gene recruitment events (i.e.,

gain of gene expression) are expected to identify functionally

important genes that are essential in the derived cell types.

Here, we demonstrate that this approach is an effective way of

discovering genes functionally relevant to a particular cell type.

Our model system is the development and evolution of the hu-

man endometrial stromal cells, the endometrial stromal fibro-

blast and the decidual stromal cell, of the mammalian uterus.

Endometrial stromal fibroblasts (ESFs) are a cell type present

in the uterus of eutherian mammals. In many species, they un-

dergo a characteristic cellular transformation called decidualiza-

tion, either spontaneously during the sexual cycle (Emera et al.,

2012) or upon pregnancy, and become decidual stromal cells

(DSCs) (Gellersen et al., 2007; Ramathal et al., 2010). Decidual-

ization is essential for the successful implantation of embryos

with invasive placentation as well as the maintenance of preg-

nancy. DSCs have various functional roles such as the regulation

of trophoblast invasion, modulation of maternal immune and in-

flammatory reactions, and control of tissue remodeling of the

endometrium (Gellersen et al., 2007; Gellersen and Brosens,
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2014). DSC is known to be a derived cell type of placental mam-

mals (Kin et al., 2014; Mess and Carter, 2006). In contrast, ESFs

are present in the gray short-tailed opossum, Monodelphis

domestica, a basal marsupial and thus an outgroup taxon to

placental mammals (Kin et al., 2014). Therefore, ESFs are both

the ontogenetic precursor of decidual cells as well as phyloge-

netically ancestral to decidual cells. Here, we focus on identifying

a cell type that is closely related to endometrial stromal cells

(ESCs) (a collective designation for ESFs and DSCs) in order to

reconstruct gene-recruitment events involved in the origin of

these cell types important in human and mammalian fertility.

ESCs are derived from mesenchymal stem cells (Aghajanova

et al., 2010; Garcı́a-Pacheco et al., 2001) or perivascular cells

(Spitzer et al., 2012). Two other cell types, also derived from

mesenchymal stem cells, have previously been proposed to be

related to ESCs: myofibroblasts (Oliver et al., 1999) and follicular

dendritic cells (Dunn et al., 2003; Muñoz-Fernández et al., 2006).

To elucidate which of these two cell types are more closely

related to ESCs, we collected RNA-seq data from human

ESCs, myofibroblasts, and follicular dendritic cells, as well as

two other cell types derived from mesenchymal stem cells, and

performed a phylogenetic analysis of their transcriptomes.

Finally, we used RNAi experiments to test genes inferred to be

recruited in the origin of ESCs and found that the majority of

them are essential for endometrial fibroblast differentiation.

RESULTS

RNA-Seq Data Reject Sister-Cell-type Relationship
between ESCs and MFBs
Previous published work suggested two candidate cell types

as closely related to ESCs: myofibroblast cells (Oliver et al.,

1999) and follicular dendritic cells (Muñoz-Fernández et al.,

2006). To assess which of the two cell types is more closely

related to ESCs, we obtained RNA-seq data for six different

mesenchymal cell types: chondrocytes (CHONs), myometrial

cells (MYOs), myofibroblasts (MFBs), follicular dendritic cells

(FDCs), ESFs, and DSCs. Five of them are previously estab-

lished cell lines that were isolated and immortalized from

normal human tissues (see Experimental Procedures). FDCs

were isolated in our lab from human tonsils following a previ-

ously published protocol (Muñoz-Fernández et al., 2006).

The identity of cells obtained from tonsils was confirmed

by marker expression (Figure S1; Muñoz-Fernández et al.,

2006). Using the Illumina RNA-seq technology, on average,

61.5 million (34–110 million) 35-bp sequence reads were ob-

tained from mRNA isolated from each cell type. On average,

69% of sequence reads were mapped uniquely to known fea-

tures (Table S1), and reads mapped to multiple locations or

to locations with no known features were discarded from the

following analyses. We also limited our analyses to protein-

coding genes. We normalized the data by calculating

transcripts per million (TPM) values from gene counts and

transcript lengths (Wagner et al., 2012).

We first performed hierarchical clustering with bootstrap re-

sampling on the RNA-seq data of six cell types. We took the

square root of TPM values and used those values for the clus-

tering. Pearson correlation coefficients between biological re-
Ce
plicates were consistently above 0.96, indicating there is no

obvious problematic sample (Figure 1A, heatmap). The result

(Figure 1A) clearly rejects the hypothesis that MFBs are closely

related to ESCs. MFB clusters with MYOs with 100% bootstrap

support. This result is also reflected in the PCA, where ESFs and

DSCs are clearly separated along PC1 frommost mesenchymal-

stem-cell-derived cell types with the exception of FDCs (Fig-

ure 1B). FDCs are close to ESCs on PC1 but separated from

them on PC2. This arrangement is also reflected in the cluster

analysis, where FDCs cluster with CHONs in a weakly supported

cluster.

One potential problem with comparing complete transcrip-

tomes is that the transcriptome similarities may reflect functional

similarities, like the expression of contractile proteins in unre-

lated contractile cells, rather than evolutionary or developmental

relatedness. Specifically, the finding that MFB is clustering with

MYO could be due to the fact that both are contractile cells. To

test whether the relationships revealed in Figure 1A reflect evolu-

tionary/developmental relationships or functional similarity, we

limited the data to transcription factor genes (TFs) (TF list taken

from Ravasi et al., 2010). With only TFs, ESCs (DSC+ESF) clus-

tered with FDCs with a high bootstrap support value (94%),

whereas MFBs clustered again with MYOs (Figure 1C). On the

PCA plot, FDCs moved slightly closer to ESCs on PC2 (Fig-

ure 1D). To test the robustness of these results, we repeated

the analysis using two other lists of transcription factors (GO:

0003700 = sequence-specific DNA-binding transcription factor

activity; Ravasi et al., 2010; Vaquerizas et al., 2009). These

data gave essentially the same result (Figure S2). Overall, the

clustering results clearly reject the hypothesis that MFBs are sis-

ter to ESCs, contra Oliver et al. (1999). The results further sug-

gest that FDCs could be related to ESCs. To further evaluate

the robustness of this result, we turned to phylogeneticmethods,

rather than clustering, and first explored the amount of tree

structure in our data set.

Cell-type Transcriptome Data Have Significant
Tree Structure
In order to apply phylogeneticmethods, such asmaximumparsi-

mony, on the transcriptomic data, we first transformed quantita-

tive expression data into qualitative (expressed/non-expressed)

data. We operationally classified the genes as expressed if TPM

> 3 and non-expressed if TPM < 3. This operational criterion is

based on a model of transcript-abundance distribution previ-

ously developed (Hebenstreit et al., 2011; Wagner et al., 2013).

The genomic distribution of H3K4me3, chromatin modification

marks for active promoters, is also consistent with the classifi-

cation. Genes classified as ‘‘ON’’ (mid-low: 3–44.8 TPM; high:

>44.8 TPM) in DSCs had much stronger association with

H3K4me3 marks compared to genes classified as ‘‘OFF’’

(Figure 2).

A convenient method of assessing the structure of distance

data is the so-called d statistic (Holland et al., 2002). The d statis-

tic is a measure of the ‘‘treeness’’ of distance data. The d value

varies between zero and one, where d = 0 indicates perfect

tree structure and d = 1 indicates a perfect network without

tree structure (Figure 3A). The d statistic is calculated from a

tetrad of cell types, and each tetrad has a unique d value.
ll Reports 10, 1398–1409, March 3, 2015 ª2015 The Authors 1399



Figure 1. Hierarchical Clustering of RNA-

Seq Data Refutes Sister-Cell-type Relation-

ship between Endometrial Stromal Cells

and Myofibroblasts

(A) Hierarchical clustering of RNA-seq data of

six cell types using all protein-coding genes. The

values on the nodes are bootstrap support values

obtained by pvclust. Branches of ESFs/DSCs,

FDCs, and MFBs are colored blue, red, and

brown. The heatmap below the dendrogram in-

dicates Pearson’s correlations of square root

TPM values among samples, with the color key at

the top-left corner of the heatmap.

(B) Principal-component analysis of RNA-seq

data of six cell types. Principal-component scores

of RNA-seq data are plotted on PC1 and PC2.

Circles representing ESFs/DSCs, FDCs, and

MFBs are colored blue, red, and brown, respec-

tively.

(C) Hierarchical clustering of RNA-seq data of six

cell types using only transcription factor genes

(Ravasi et al., 2010) with the heatmap. The values

on the nodes are bootstrap support values.

Branches are colored as in (A).

(D) Principal-component analysis of RNA-seq

data of six cell types using only transcription

factor genes. Principal-component scores of

RNA-seq data are plotted on PC1 and PC2. Cir-

cles are colored as in (B).

See also Table S1 and Figure S2.
For our transcriptome data, we calculated the Hamming dis-

tance among all pairs of samples (n = 12, with two replicate sam-

ples for each cell type). We then calculated the d value for each

tetrad of samples (i.e., a total of 495 tetrads). The frequency dis-

tribution of d has a mode at the smallest bin (0–0.025) and has a

long tail extending to 0.95 (Figure 3B). The set of all tetrads was

then filtered into two subsets. One is what we call the ‘‘replicate

set,’’ which contains all pairs of replicates for two cell types each.

There are 15 such replicate tetrads. These replicate tetrads allow

us to measure the non-treeness (amount by which d is larger

than 0) due to experimental noise. The other set includes all

the tetrads that have only one replicate per cell type in each

set of four samples.

The average d value for pairs of replicate samples is 0.057 and

indicates that, on average, technical noise does not contribute

much to the d values of compared cell types. The average d value

for the cell type set of tetrads excluding replicates is 0.36. Holland
1400 Cell Reports 10, 1398–1409, March 3, 2015 ª2015 The Authors
et al. (2002) suggest to calculate the dx
value, i.e., the average d value of all te-

trads that include a particular cell type x.

The comparison of dx values allows one

to identify cell types that do not fit the

tree structure. The dx values vary between

0.307 and 0.405 (Figure 3C), which is

typical for tree-like data with unbalanced

tree structure (Figure 3D; Holland et al.,

2002). There is no cell type that has a

considerably larger dx value than the

others, as would be expected for opera-
tional taxonomic units (OTUs) (in this case cell types) that resulted

from recombination (hybridization) of distantly related cells. In or-

der to assess statistically whether our d-value data are signifi-

cantly less than 1 (i.e., has significant tree signal), we performed

a jackknife procedure on log-transformed d data with d values

larger than 0.3 (at smaller d values, the jackknife process leads

to artifacts). The distribution of p values as a function of d values

is given in Figure 3E. In our data, the minimal p values estimated

started to rise considerably for d > 0.7 and are consistently larger

than p = 0.05 for d > 0.8. We conclude that, in our data, only

d values below 0.7 can be significantly smaller than 1. To assess

the overall tree structure of our data, we recorded the fraction of

d values less than 0.7. The cumulative d value distribution for all

cell types is shown in Figure 3F.We find that 84%of all the tetrads

in our cell type set have a d< 0.7. The available evidence supports

the assumption that the transcriptome data have tree structure

comparable to simulated data with known tree structure (Holland



Figure 2. Genes below the Expression Threshold of 3 TPM Have

Weak Epigenetic Promoter Mark, H3K4me3

Average ChIP-seq profiles for H3k4me3 read enrichment in DSCs are shown.

The x axis represents genomic regions from 30 kb upstream of transcriptional

start sites (TSSs) to 30 kb downstream of transcriptional end sites (TES), and

the y axis represents the level of H3K4me3 marks. Reads were filtered by

expression levels (TPM values) determined from transcriptomic data of DSCs.

First two classifications were made (ON and OFF genes) as described in

Experimental Procedures. Specifically, off genes were determined as genes

with less than 3 TPM, whereas ON (expressed) genes, >3 TPM. All expressed

genes were further divided into two classes: medium–lowly expressed and

highly expressed genes. The range of TPM values for the three classifications

were OFF genes (<3 TPM), mid-low expression (3 TPM–44.8 TPM), and high

expression levels (>44.8 TPM). These data suggest that the operational cri-

terion for non-expressed genes of <3TPM is statistically associated with low

H3K4me3 signal.
et al., 2002). This approach thus fails to reject the prediction of the

sister-cell-type model that the transcriptome data have signifi-

cant tree structure.

ESCs Are Related to FDCs
Maximum parsimony tree reconstruction was performed on the

transcriptomic data, transformed into expressed and non-ex-

pressed as described above, with bootstrap resampling to

obtain support values on each node. The reconstructed tree

was generally well supported (Figure 4A), and the topology of

the tree is identical to that of the hierarchical clustering dendro-

gram obtained using only TF genes. Again, MFB was clearly

separated from the ESCs. The tree also supports a relationship

between ESCs (ESC = ESF + DSC) and FDCs with a moderate

bootstrap value (88.5%).

ESCs Evolved Role in Cell-Cell Signaling and Leukocyte
Immunity
The inferred relationship between ESCs and FDCs imply a his-

tory of gene activation and suppression during the evolutionary

or ontogenetic differentiation of these cell types. An elementary

inference suggests that the genes inferred to have been acquired

during the cell differentiation process are likely to be important to

the derived function of these cells. We first explored this implica-

tion with a gene ontology analysis.
Ce
We performed maximum parsimony ancestral character state

reconstruction to infer the gene-expression changes associated

with the evolution of ESCs. The number of gene-expression

changes unambiguously reconstructed on each branch of the

cell type tree is shown in Figure 4B. We paid particular attention

to genes whose gene expression state changes on three

branches related to the clade of FDCs, ESFs, and DSCs: (1)

the branch to the clade formed by FDCs, ESFs, and DSCs; (2)

the branch to the clade formed by ESFs and DSCs; and (3) the

branch to DSCs. The overall result is summarized in Figure 4B,

and the lists of all gene-expression changes, including the

ones reconstructed only by ACCTRAN (ACC) or DELTRAN

(DEL) reconstruction algorithm, found on these branches are

shown in Tables S2, S3, and S4.

GO term-enrichment analyses on the genes inferred to have

been recruited at the branch uniting FDCs and ESCs, branch

a in Figure 4B, share genes related to cell migration (GO:

0030334, 2000145, and 0051270). Genes overrepresented in

the lineage leading to ESCs (branch b) are enriched for genes

with developmental functions, cell-cell signaling, and leukocyte

immunity (GO: 0009653, 0007267, and 0002443). This list of

genes is also enriched for genes with reproductive defects in

knockout mice (Table S5). The lineage of DSCs (branch c) has

genes recruited that are involved in hormone metabolism,

gonadal development, and regulation of developmental pro-

cesses (GO: 0042445, 0008406, and 0051094). The comprehen-

sive lists of enriched GO terms can be found in Tables S6, S7,

and S8.

TFs Recruited to ESCs Are Necessary
for Decidualization
In Table 1, we list the top 15 (in terms of gene expression) out of

28 TFs inferred to be recruited during the evolution of ESCs. The

list of recruited genes includes known regulators of decidualiza-

tion, FOXO1,HOXA11, andPGR (progesterone receptor), as well

as genes that have not been implicated in ESC biology. We per-

formed RNAi-mediated gene knockdown of these 15 TF genes in

cultured human endometrial cells. The RNAi reduced the expres-

sion levels of target genes by 40%–98% (Figure S3). Among the

TFs tested, HOXA11 and HOXD8 gene expression was not

consistently knocked down with the siRNA we used, so they

were removed from further analyses (data not shown). To assess

knockdown effects on decidualization, we measured RNA

expression of two decidual marker genes (PRL and IGFBP1).

As a reference, we also knocked down genes that were recruited

on other branches of the cell-type tree. Specifically, EMX2 and

FOXF1 were recruited on the branch leading to the FDC-ESC

clade (branch a in Figure 4) and SOX6 and IKZF2 were recruited

on the branch leading to the CHON-(ESC-FDC) clade (Table 1).

For some TFs, especially HOXD9, HOXD10, and SALL1, the

knockdown had measurable effects, but the outcome was vari-

able among replicates for unknown reasons. Nevertheless,

knocking down 8 out of 13 ESC-recruited TFs consistently

decreased PRL expression whereas only one out of four non-

ESC-recruited TFs showed consistent PRL decrease upon

knockdown (Figure 5A). Similarly, knocking down 5 out of 13

ESC-recruited TFs consistently decreased IGFBP1 expression,

whereas one out of four non-ESC-recruited genes consistently
ll Reports 10, 1398–1409, March 3, 2015 ª2015 The Authors 1401



Figure 3. RNA-Seq Data Contain Signifi-

cant Tree Structure

(A) Schematic for explaining the treeness metric,

d. When d = 1, the relationship among the tetrad

should be represented as a network. When delta

is significantly smaller than 1, the relationship

among the tetrad can be regarded as more tree-

like.

(B) The frequency distribution of d for all 495 tet-

rads with the ‘‘rugplot’’ showing where actual

d values fall on the x axis.

(C) The delta plot for the cell types used in this

study. The average d value among all cell types

excluding replicates (0.36) is shown by the red

dashed line. This distribution of delta values is

expected for trees with unbalanced tree structure.

(D) Schematic showing balanced and unbalanced

tree topology. Theoretically expected average

delta value is higher for unbalanced trees (0.37)

than for balanced ones (0.18).

(E) A plot of delta values and p values as calcu-

lated by the jackknife method. The dashed line

shows the threshold of p = 0.05.

(F) Cumulative delta plot of all cell types. It is

shown that 84% of tetrads falls under delta = 0.7

as indicated by the red dashed arrow.
decreased IGFBP1 upon knockdown (Figure 5B). This difference

may be due to higher-average gene-expression levels for ESC-

recruited genes (22.16 TPM compared to 8.72 TPM for non-

ESC genes), so we selected bottom seven ESC-recruited TFs

from the ranked list so that the average TPM value is approxi-

mately equal to non-ESC TFs (8.26 versus 8.72) and created

boxplots of PRL (Figure 5C) and IGFBP1 (Figure 5D) expression

levels relative to negative control upon gene knockdown. The

plots show that the decrease of marker gene expression tends

to be larger for ESC-recruited TFs than for genes recruited earlier

in cell evolution.

FOXO1 and PGR Are Hubs of Decidual Gene Regulation
We further investigated the regulatory relationships among the

eight ESC-recruited transcription factors by examining the ef-

fects of RNAi knockdown on other TFs (Figure S4). The results

are summarized in the heatmap in Figure 5E. There are some

interesting features in this heatmap, which include (1) FOXO1

is activated by almost all other TFs tested; (2) PGR knock-

down significantly reduced the expression levels of HOXD11,
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FOXO1, and GATA2, suggesting the

involvement of these TFs downstream

of the progesterone-signaling pathway.

PGR is suppressed by most other TFs;

(3) TFAP2C is the only TF whose knock-

down reduced the expression level of

PGR. Its knockdown also reduced the

expression of FOXO1 and GATA2, and

these genes in turn suppress the expres-

sion of TFAP2C. These results suggest a

multi-layered co-regulatory network in

DSCs (Figure 5F). The top layer genes
PGR and TFAP2C actively regulate the bottom layer genes

GATA2, FOXO1, and HOXD11, whereas the bottom layer genes

suppress the top layer genes and thus form negative-feedback

loops. FOXO1 acts as a network hub and receives inputs from

all the other genes in the network.

DISCUSSION

Interpretation of Cell-type Trees and the Origin
of Decidual Cells
We interpret the reconstruction of the cell-type tree (Figure 4)

as a hypothesis about the evolutionary history of cell-type origi-

nation (Arendt 2008). Each branching point on the cell-type tree

implies an inferred novelty where a new pair of sister cell types

originated from an ancestral cell type. This interpretation is anal-

ogous to that of gene trees among paralog genes and also

so-called ‘‘character trees,’’ which reconstruct evolutionary dif-

ferentiation of repeated organs as, for instance, in the evolution

of eye types in arthropods (Oakley et al., 2007). In our recon-

struction, we infer two well-supported cell-type-origination



Figure 4. Cell-type Tree Reconstructed by

Maximum Parsimony and Inferred Changes

in Gene Expression

(A) Cell-type tree as reconstructed by maximum

parsimony. Values on the nodes are bootstrap

values (% of instances in which the node ap-

peared in 1,000 bootstrap replicates). The scale

bar corresponds to 100 changes.

(B) The numbers of unambiguous gene expres-

sion changes on each branch of the cell-type tree.

The number of gene expression gained is indi-

cated in green above each branch, and the num-

ber of gene expression lost is indicated in pink

below each branch. The numbers shown here

represent conservative estimates and only

include genes that were unambiguously re-

constructed through maximum parsimony

reconstruction. Three branches of particular in-

terest are labeled as a (the branch uniting the

ESC-FDC clade), b (the branch uniting the ESC

clade), and c (the branch uniting the DSC clade).

The table below shows three representative GO

terms (ranked by p values) enriched in the list of

genes recruited (gene expression gained) on the

labeled branches.

See also Tables S2, S3, S4, S5, S6, S7, and S8 for

specific list of genes recruited on the three

branches and the lists of enriched GO terms and

KO terms.
events. One separates FDCs and ESCs (ESC = ESF + DSC), and

the second separates ESFs and DSCs. There is no support for a

close relationship of ESCs and MFB cells.

The close relationship between FDCs and ESCs does not

prove that FDC is in fact the sister cell type to ESCs, i.e., the

most closely related cell type, becausewe could not exhaustively

sample all human cell types. Nevertheless, the result suggests

that ESCs can be considered as a specialized immune regulatory

cell type, a role consistent with their function of providing an im-

mune tolerant environment for the allogenic fetus (Erlebacher,

2013; Haig, 1993). This interpretation is also supported by the

gene ontology analysis of the genes inferred to be recruited

into ESCs. This set is enriched for genes involved in cell-cell

signaling and the regulation of leukocyte immunity (Figure 4B).
Cell Reports 10, 1398–1409
Because the present analysis was only

donewith cells from one species, human,

it is not possible to associate the inferred

cell-type-origination events with partic-

ular lineages in mammalian history. But

comparison with data from other species

can constrain the phylogenetic timing of

these events. For the split between

ESFs and DSCs, the consensus view is

that DSCs originated prior the radiation

of placental mammals and after the

most-recent common ancestor of ther-

ians, i.e., in the stem lineage of placental

mammals (Kin et al., 2014; Mess and

Carter, 2006). DSCs have only been

described from placental mammals
(Mossman, 1987) and are absent from the marsupial Monodel-

phis domestica (Kin et al., 2014). Reports about the endometrium

from other marsupials show that there is no direct interface

between the trophoblast and the endometrial stroma in any

marsupial (reviewed in Wagner et al., 2014). The decidual cell

is a shared derived (synapomorphic) character of placental

mammals.

Given thatMonodelphis has both ESFs (Kin et al., 2014) as well

as FDCs (K.K., unpublished data), the split between FDCs and

ESCs likely happened prior to the most-recent common

ancestor of therians (before the lineage split between marsupial

and placental mammals). But at this point, it is impossible to

more precisely identify the time in phylogeny when this event

happened.
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Table 1. Average Gene-Expression Levels of TFs in ESFs-DSCs

Selected for RNAi Assay

Recruitment Type Ensembl Gene ID

Gene

Name

Avr. ESF-

DSC TPM

ESC ENSG00000088881 EBF4 57.84

ESC ENSG00000128710 HOXD10 56.64

ESC ENSG00000103449 SALL1 38.67

ESC ENSG00000150907 FOXO1 33.82

ESC ENSG00000082175 PGR 27.26

ESC ENSG00000005073 HOXA11 24.49

ESC ENSG00000128709 HOXD9 16.03

ESC ENSG00000179348 GATA2 12.83

ESC ENSG00000173917 HOXB2 9.34

ESC ENSG00000128713 HOXD11 7.66

ESC ENSG00000175879 HOXD8 7.50

ESC ENSG00000134532 SOX5 7.41

ESC ENSG00000087510 TFAP2C 7.41

ESC ENSG00000153234 NR4A2 6.83

ESC ENSG00000198945 L3MBTL3 6.31

ESC-FDC ENSG00000103241 FOXF1 11.92

ESC-FDC ENSG00000170370 EMX2 10.00

CHON-(ESC-FDC) ENSG00000110693 SOX6 8.96

CHON-(ESC-FDC) ENSG00000030419 IKZF2 4.00
Tree Structure in the RNA-Seq Data of Cell Types
One of our goals in the present study was to assess whether the

relationship of cell types should be represented as a tree or a

network. The assumption of treeness is true for gene trees as

long as there is no recombination among genes, but when

recombination occurs, networks become the best representa-

tion of the relationship rather than trees. Whether or not we

can treat the relationships among cell-type transcriptomes as

trees is an issue that was unexplored until recently. It is true

that, in some cases, it is known that sequential expression of

transcription factors creates a tree-like hierarchical differentia-

tion pattern during the process of cell differentiation (see Graf

and Enver, 2009 for a review). However, it is also possible that

large-scale recruitment of gene-regulatory modules occurs

frequently, which would make the relationship among transcrip-

tomes more network-like than tree-like. We explored this issue

by applying the technique called d-plot, which was originally

developed to assess the treeness for phylogenetic analyses

(Holland et al., 2002). We found no evidence of significant

‘‘recombination’’ events among the cell types we used in the pre-

sent study and concluded that the RNA-seq data of the six cell

types contain tree structure. Whether or not this conclusion

holds true for other groups of cell types is an open question

that warrants future studies. Interestingly, a few recent studies

approached this issue using public data sets generated from

large-scale sequencing projects such as ENCODE or FANTOM

(Liang et al., 2015; Nair et al., 2014). In Nair et al. (2014), the au-

thors used ChIP-seq histone modification data from ENCODE to

reconstruct cell-type trees under the assumptions very similar to

ours, although they did not explicitly test whether reconstructing
1404 Cell Reports 10, 1398–1409, March 3, 2015 ª2015 The Authors
cell-type trees can be justified with their data. In Liang et al.

(2015), the authors developed a statistical model for calculating

probability distributions of d and applied the model to ENCODE

and FANTOM RNA-seq data. They found, similar to us, that the

RNA-seq data contain significant tree structures. The fact that

different kinds (ChIP-seq data in Nair et al., 2014 as opposed

to RNA-seq data in Liang et al., 2015 and this study) and scales

of data support the tree-like relationship of cell types implies

wide applicability of the cell-type tree model.

Methodological Considerations for Reconstructing
Cell-type Trees
An interesting finding was that the inferred relationship of cell

types differed when using different subsets of genes for clus-

tering. When using all protein-coding genes for clustering,

FDCs and CHONs clustered, whereas FDCs clustered with

ESFs and DSCs when using only TFs. The discrepancy is not

unexpected given that there are broadly two classes of genes

contributing to cellular phenotypes: ‘‘realizer’’ or ‘‘effector’’

genes and regulatory genes (Erwin and Davidson, 2009; Graf

and Enver, 2009; Wagner, 2007). The former are represented

by enzymes, cytoskeletal genes, extracellular matrix protein

genes, etc., and are directly responsible for the physiological

phenotype of the cell. In contrast, the latter is represented by

transcription factors and co-factors, and its effect on the cellular

phenotype is mediated through realizer genes they are regu-

lating. Thus, regulatory genes are more indirect and ‘‘abstract’’

in their relation to the function of cells. Functional significance

of regulatory genes can, in principle, change by changing which

realizer genes they regulate through modification of cis-regu-

latory elements of their target genes. On the other hand, the

expression patterns of realizer genes are more likely to show

convergent similarity due to shared function rather than shared

developmental or evolutionary history. An example to illustrate

this point is the myoepithelial cells in the mammalian breast

glands. They express a similar set of contractile proteins as

smooth muscle cells and serve as contractile cells during lacta-

tion. In spite of their functional resemblance to smooth muscle

cells, myoepithelial cells differ from smooth muscle cells by the

lack of transcription factors such as myocardin and others (Li

et al., 2006) and are derived mammary gland epithelial cells.

In the human genome, TFs constitute less than 10% of all pro-

tein-coding genes (Vaquerizas et al., 2009) and the vast majority

of genes can be considered as realizer genes. Besides, the dy-

namic range of realizer genes is generally much larger than

that of TFs (in our data, the maximum TPM value for TF genes

was 4,159.13 as opposed to the maximum TPM value of

57,000.16 for all protein-coding genes). Therefore, in the tran-

scriptomic analysis, signals from TFs can be easily overridden

by those from realizer genes, and the results thus are influenced

by functional similarity rather than historical relatedness. For

these reasons, we regard the clustering results obtained from

TF-gene data as a better representation of the historical relation-

ships of cell types. This interpretation is confirmed by the results

from our maximum parsimony analysis, which relies on the

pattern of shared derived gene expression (synapomorphy)

rather than overall similarity, given the same topology as hierar-

chical clustering using only TF genes. We thus conclude that



FDCs are the most closely related cell types to ESCs among the

cell types compared here.

Cell-type Phylogenetics Reliably Identify Decidual
Regulatory Genes
One of the advantages of usingmaximumparsimony to compare

transcriptomes is that it allows inferences about changes in gene

expression associated with inferred cell-type origination events.

Using the reconstructed cell-type tree, we inferred a list of genes

gained or lost on the branch leading to ESCs (= ESF and DSC).

The hypothesis is that the list of genes gained should be enriched

for genes necessary to perform the derived function of the ESCs.

Consistent with this hypothesis, the gene set is enriched for

mouse knockout phenotypes with reproductive defects (Table

S8). Also, we directly tested this hypothesis by knockdown ex-

periments of a sample of those TFs and monitored the expres-

sion of molecular markers for decidualization, PRL and IGFBP1.

The expression of these decidualization markers decreased in 8

out of 13 cases for PRL and 5 out of 13 cases in IGFBP1. Five

TFs, PGR, FOXO1, GATA2, TFAP2C, and HOXD11, showed a

consistent decrease in both PRL and IGFBP1 expression upon

knockdown. The roles of PGR and FOXO1 in decidualization

have been well studied (Gellersen and Brosens, 2014). GATA2

is known to be expressed in murine DSCs (Rubel et al., 2012),

and its downregulation through hypermethylation has been

recently linked to endometriosis (Dyson et al., 2014). HOXD11

is also known to be expressed in ESCs, but its functional role

in decidualization was unknown until recently, when Raines

et al. (2013) generated triple knockout mice of HOXD9, -10,

and -11. The HOXD9, -10, and -11 mutant mice are infertile

and display significantly reduced stromal components in the

uterus, although individual knockout of HOXD9, -10, or -11 did

not result in any phenotypic defects in reproductive tract. All

these HOXD genes were also identified as potential decidual

genes through our phylogenetic analysis. The functional redun-

dancy among HOXD genes may also contribute to the variable

results of knockdown for HOXD9 and 10 genes. TFAP2C is

known to be important for trophectoderm development (Kucken-

berg et al., 2012), but no role in decidualization has been docu-

mented. It is interesting that, in this study, TFAP2C was found to

be not regulated by PGR. Given that the activity of AP2 is modu-

lated by cAMP/PKA signaling (Garcı́a et al., 1999), it is possible

that TFAP2C acts as a mediator of the cAMP-signaling pathway

in decidualization. These results not only show that decidual reg-

ulatory genes can be discovered from cell-type phylogenetic

analysis but also imply that the sister-cell-type model is biologi-

cally meaningful.

A History of Cellular Innovations
In Figure 6, we summarize the broad biological implications of

our findings. The cell-type family consisting of FDCs, ESFs,

and DSCs is characterized by the acquisition of genes regulating

and contributing to cell migration. ESCs likely originated

through acquisition of progesterone responsiveness and

changes in cell-cell signaling and the regulation of leukocyte-

mediated immunity. Finally, decidual cells derived through the

acquisition of genes involved in gonad development and hor-

mone metabolism.
Ce
The implication of this study is not limited to the field of endo-

metrial biology. What we have shown here is that phylogenetic

analysis of cell-type relationships can be an effective discovery

tool for genes with cell-type-specific functions. As the amount

of RNA-seq data from different cell types rapidly increases, we

have to find a good way to represent, organize, and extract in-

formation from such data. Given that the cell types are the

products of both developmental and evolutionary histories,

we think that the phylogenetic method, which has been devel-

oped to infer historical relationships, has a great potential to

become an important discovery tool for cell and developmental

biologists.

EXPERIMENTAL PROCEDURES

Transcriptome Data Acquisition

Human ESFs (ATCC; cat. no. CRL-4003), CHONs (ATCC; cat. no. CRL-2847),

and MFBs (ATCC; cat. no. CRL-2854) were purchased from American Type

Culture Collection (ATCC). MYOs were obtained from Urogynecology

Research Laboratory at University of Texas Southwestern Medical Center.

Each type of cell was cultured following the instructions of the suppliers. Spe-

cifically, ESFs were grown in DMEM supplemented with 10% charcoal-strip-

ped calf-serum (Hyclone) and 1% antibiotic/antimycotic (ABAM; GIBCO),

CHONs were cultured in DMEM with 0.1 mg/ml G-418 and 10% FBS, MFBs

were cultured in DMEMwith 1%ABAM and 5% FBS, andMYOs were cultured

in DMEM/F12 with 1% ABAM.

Human FDCs were freshly isolated from human tonsils obtained through

routine tonsillectomy following the protocol described in Muñoz-Fernández

et al. (2006). De-identified fresh tonsillar tissue was obtained after routine ton-

sillectomy from the pathology department, after routine gross inspection. Use

of this tissue was approved by the Yale Human Investigation Committee, pro-

tocol no. 1007007149. The tonsils were thoroughly washed in PBS solution

and cut into small pieces and finely minced in a small volume of RPMI 1640

mediumwith 13 ABAM. The suspension was put in a solution of 0.25% trypsin

and 0.5 mM EDTA for 15 min at 37�C, and the reaction was stopped by adding

cold RPMI 1640 with 20% FCS. The suspension was filtered through 70-mm

nylon cell strainer (BD Falcon) and centrifuged at 425 3 g for 10 min. The su-

pernatant was discarded, and the cell pellet was suspended in RPMI 1640 and

centrifuged on Ficoll-Paque (Pharmacia Biotech) for 20 min at 600 3 g. Cells

were collected from the interface, suspended in PBS, and washed. This sus-

pension was incubated in culture flasks for 1 hr at 37�C in complete RPMI

1640 with 10% FCS to allow macrophages and granulocytes to adhere

to the flask. The supernatant cells were washed and incubated in fibroblast

medium with 13 ABAM. After overnight incubation to allow adherent cells to

attach to the flask, lymphocytes in the supernatant were discarded. Fibroblast

medium was then replaced and changed twice a week. The identity of cells

isolated from tonsils was confirmed by RT-PCR of total RNA isolated from

cultured cells with the primer sets described in Muñoz-Fernández et al.

(2006) except for those for CD13 (ANPEP) and CD21 (CR2). For amplifying

CD13 and CD21, we used the following forward and reverse primers: CD13

forward = AACCTCATCCAGGCAGTGAC; CD13 reverse = GCCTGGGTCAT

CAGGAACTA; CD21 forward = ACACATGAGGGAACCTGGAG; and CD21

reverse: AGTGAACGGGATCTGCAAAC. See also Figure S1.

To induce decidualization in human ESCs, the cells were treated with

0.5 mM 8-Br-cAMP (Sigma) and 0.5 mM of the progesterone analog medroxy-

progesterone acetate (MPA) for 48 hr in DMEM supplemented with 2% char-

coal-stripped calf-serum. Total RNA was extracted using the RNeasy Midi

RNA-extraction kit (QIAGEN) followed by on-column DNase I treatment. Total

RNA quality was assayed with a Bioanalyzer 2100 (Agilent) and found to be of

excellent quality. Aliquots from the total RNA samples were sequenced using

the Illumina Genome Analyzer II platform, following the protocol suggested by

Illumina for sequencing of cDNA samples. Sequence reads were mapped to

the human (GRCh37.69) cDNA builds at Ensembl with TopHat2 (Trapnell

et al., 2009); two mismatches were allowed and reads aligning to more than

one cDNA were discarded.
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Figure 5. RNAi Knockdown of Several ESC-Recruited Genes Affect In Vitro Decidualization

(A and B) Effects of gene knockdown of 17 transcription factors on PRL and IGFBP1 gene-expression level, respectively. The mRNA abundances in siRNA-

introduced cells relative to negative control in three independent sets of experiment are shown separately as first, second, and third. The vertical dashed line

(legend continued on next page)
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Figure 6. A Schematic Model Summarizing the Findings of the Pre-

sent Study

The gene-expression reconstructions on the cell-type tree suggest the history

of cellular innovations in the evolution of these cell-type families. Most notable

is the acquisition of leukocyte regulatory activity with the origin of endometrial

stromal cells and the acquisition of genes related to hormone metabolism with

the origin of decidual cells.
Transcriptomic Data Analysis

The TPM values (Wagner et al., 2012) were calculated for data normalization

and were used in the following analyses. The transcript length information

was obtained from the Ensemble database with Biomart. When a gene has

multiple transcripts, a median length of all transcripts for the gene was used.

Hierarchical clustering with bootstrap analyses was done using the pvclust

package (Suzuki and Shimodaira, 2006) in R (R Development Core Team,

2012). Principal-component analysis was also performed with R. For the pur-

pose of phylogenetic analyses, TPM values were transformed into binary

values (1 or 0), representing presence or absence of gene expression. Specif-

ically, genes with TPM values above 3 were called present and those with TPM

values less than 3 were called absent based on our previous finding (Wagner

et al., 2013). The resulting data matrices were used for calculating distances

for tree-likeness test. For the tree-likeness test, four sets of RNA-seq data,

which are collectively called ‘‘tetrad,’’ were chosen out of the 12 RNA-seq

data sets, and pairwise hamming distance was calculated for all pairs in the

tetrads. Assuming that the four-point condition is met (Holland et al., 2002),

the network representing the relationship of the tetrad can be uniquely derived.

We calculate the value, d, which is a proxy for the tree-likeness. If d equals 1,
separates ESC TFs and non-ESC TFs. The red line represents the relative exp

expression is significantly smaller than 1 (p < 0.05; one tailed Welch’s t test betw

2 SEM.

(C and D) Boxplots showing knockdown effects of ESC-recruited (left) and non-

genes, seven TFs were selected so that the average TPM values (8.26) match th

expression levels in three biological replicates for each gene and then created b

(E) Heatmap showing knockdown effects among eight TFs. The genes knocked d

are shown in column. The color key is given at the top left corner of the heatmap: g

(F) Schematic showing positive and negative co-regulatory relationships of five

of edges are proportional to the strength of regulation as revealed by RNAi k

(p value < 0.06).

See also Figures S3 and S4.

Ce
the network does not have tree structure at all, whereas if d equals zero, the

network should be represented as a tree. We estimated the probability of d be-

ing significantly smaller than 1 by using jackknife statistics. Maximum parsi-

mony phylogenetic reconstruction of cell-type tree was performed with

PAUP* 4.0b10 (Swofford, 2003). Maximum parsimony ancestral reconstruc-

tion was performed with the reconstructed tree, setting the MYO type as an

outgroup, using PAUP* 4.0b10.

Gene Function Annotation

GO term enrichment analyses were performed with a web-based tool GOrilla

(Eden et al., 2009). Genes recruited into endometrial expression were anno-

tated based on their mouse knockout phenotypes using data available at

the Mouse Gene Informatics (MGI) database. Enrichments, p values (hyper-

geometric), and FDR q values were calculated using VLAD (http://proto.

informatics.jax.org/prototypes/vlad/).

Processing of H3K4me3 ChIP-Seq Data

Sequence readswere aligned to the human reference genome (hg19) using the

ultra-fast short DNA sequence aligner Bowtie (Langmead and Salzberg, 2012;

Langmead et al., 2009). Sequencing depth for ChIP-seq samples and input

averaged 34.5 million and 32 million reads, respectively, per biological sample

with >76% overall uniquely aligned reads. Only uniquely aligned reads were

used for further analysis. Visualization of reads at functional genomic regions

was obtained by ngs.plot, a genomic database-integrating software, following

author’s recommendations (Shen et al., 2014).

siRNA Knockdown

siRNAs for TFAP2C (MU-005238-00),HOXA11 (MU-012108-01), HOXD9 (MU-

012494-00), HOXD10 (MU-011696-01), HOXD11 (MU-013095-00), GATA2

(MU-009024-00), PGR (MU-003433-01), SALL1 (MU-006560-01), and

FOXO1 (MU-003006-03) were purchased from GE Healthcare (siGENOME;

Dharmacon), and siRNAs for EBF4 (s226921), HOXB2 (s6792), HOXD8

(s6852), SOX5 (s13303), NR4A2 (s9787), L3MBTL (s39037), EMX2 (s4668),

FOXF1 (s5221), SOX6 (s30968), and IKZF2 (s22420) were purchased from

Life Technologies (Silencer Select; Ambion). As negative control, we used

ON-TARGETplus Non-targeting Pool siRNAs (D-001810-10-05; Dharmacon),

which are supposed to have minimal targets in the human transcriptome. We

followed a protocol developed for human ESCs by Yale Molecular Discovery

Center. Specifically, stock siRNA solution was diluted to make 100 nMworking

solution. 100 ml of theworking solutionwas added to eachwell of 24-well plates

and then mixed with transfection mix (1:100 dilution of RNAiMax in Optimem)

and incubated for 20 min. 300 ml of 15,000 ESCs was added to each well in

the growth media described above. After incubating cells for 48 hr, the media

was changed to differentiationmedia (DMEMsupplementedwith 2%charcoal-

stripped calf-serum, 0.5 mM 8-Br-cAMP [Sigma], and 0.5 mM of MPA). Cells

were incubated for additional 48 hr and then processed for RNA isolation

with RNeasy kit (QIAGEN). cDNA was synthesized with High Capacity cDNA

Reverse Transcription Kit (Invitrogen). Taqman probes for real-time PCR

(Applied Biosystems) for TFAP2C (Hs00231476_m1), HOXA11 (Hs0019

4149_m1), HOXD11 (Hs00360798_m1), FOXO1 (Hs01054576_m1), PGR

(Hs01556702_m1), GATA2 (Hs00231119_m1), HOXD9 (Hs00610725_g1),

SALL1 (Hs00231307_m1), HOXD10 (Hs00157974_m1), EBF4 (Hs003256

62_m1), HOXB2 (Hs00609873_g1), HOXD8 (Hs00980336_g1), SOX5
ression level of 1, which means no effect. Asterisks indicate that the relative

een delta Ct values of negative control and test samples). Error bars represent

ESC-recruited (right) genes on PRL (C) and IGFBP1 (D). From ESC-recruited

at of four non-ESC TFs (8.72). We first took the geometric mean of the relative

oxplots for each group.

own are shown in row, and the genes whose expression levels were examined

reenmeans upregulation and redmeans downregulation following knockdown.

TFs that showed consistent downregulation of PRL and IGFBP1. The widths

nockdown assays. Dotted lines represent marginally significant interactions
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(Hs00753050_s1), NR4A2 (Hs00428691_m1), L3MBTL (Hs002871

33_m1), EMX2 (Hs00244574_m1), FOXF1 (Hs00230962_m1), SOX6

(Hs00264525_m1), and IKZF2 (Hs00212361_m1) were purchased and used

for real-time PCR experiments.
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