29 research outputs found

    What do humus balances really tell about soil organic matter?

    Get PDF
    Humus balance methods (HBM) are applied as tools for decision support and environmental impact assessment in arable farming. For reasons of applicability in practice, several HBM avoid a demand for comprehensive site data and are only sensitive to management. As a consequence, these methods, from a methodological point of view, cannot quantify SOM changes. Still, we show that such HBM can be used to assess the relative impact of different management scenarios at a defined site. To do so, we calculated humus balances for treatments in two long-term field experiments according to the well-recognized VDLUFA (2014) method, and compared the variation of treatments in humus balances to the variation in SOM level changes by applying analysis of correlation. In fact, the variables were positively correlated, even though the absolute deviation between balances and SOM changes was considerable. The application of another HBM that considers management impact on SOM as a site-dependent process (HU-MOD-2) showed that the ability to predict absolute SOM changes actually is dependent on sensitivity to environmental drivers of OM turnover in soils.Keywords: humus balance, decision support, environmental impact assessment, methodolog

    An extracellular carboxylesterase from the basidiomycete Pleurotus sapidus hydrolyses xanthophyll esters

    Get PDF
    An extracellular enzyme capable of efficient hydrolysis of xanthophyll esters was purified from culture supernatants of the basidiomycete Pleurotus sapidus. Under native conditions, the enzyme exhibited a molecular mass of 430 kDa, and SDS-PAGE data suggested a composition of eight identical subunits. Biochemical characterisation of the purified protein showed an isoelectric point of 4.5, and ideal hydrolysis conditions were observed at pH 5.8 and 40 degrees C. Partial amino acid sequences were derived from N-terminal Edman degradation and from mass spectrometric ab initio sequencing of internal peptides. An 1861-bp cDNA containing an open reading frame of 1641 bp was cloned from a cDNA library that showed ca. 40% homology to Candida rugosa lipases. The P sapidus carboxylesterase represents the first enzyme of the lipase/esterase family from a basidiomycetous fungus that has been characterised at the molecular level

    Shallow non-inversion tillage in organic farming maintains crop yields and increases soil C stocks: a meta-analysis

    Get PDF
    Reduced tillage is increasingly promoted to improve sustainability and productivity of agricultural systems. Nonetheless, adoption of reduced tillage by organic farmers has been slow due to concerns about nutrient supply, soil structure, and weeds that may limit yields. Here, we compiled the results from both published and unpublished research comparing deep or shallow inversion tillage, with various categories of reduced tillage under organic management. Shallow refers to less than 25 cm. We found that (1) division of reduced tillage practices into different classes with varying degrees of intensity allowed us to assess the trade-offs between reductions in tillage intensity, crop yields, weed incidence, and soil C stocks. (2) Reducing tillage intensity in organic systems reduced crop yields by an average of 7.6 % relative to deep inversion tillage with no significant reduction in yield relative to shallow inversion tillage. (3) Among the different classes of reduced tillage practice, shallow non-inversion tillage resulted in non-significant reductions in yield relative to deep inversion; whereas deep non-inversion tillage resulted in the largest yield reduction, of 11.6 %. (4) Using inversion tillage to only a shallow depth resulted in minimal reductions in yield, of 5.5 %, but significantly higher soil C stocks and better weed control. This finding suggests that this is a good option for organic farmers wanting to improve soil quality while minimizing impacts on yields. (5) Weeds were consistently higher, by about 50 %, when tillage intensity was reduced, although this did not always result in reduced yields

    The extinct marine megafauna of the Phanerozoic

    Get PDF
    The modern marine megafauna is known to play important ecological roles and includes many charismatic species that have drawn the attention of both the scientific community and the public. However, the extinct marine megafauna has never been assessed as a whole, nor has it been defined in deep time. Here, we review the literature to define and list the species that constitute the extinct marine megafauna, and to explore biological and ecological patterns throughout the Phanerozoic. We propose a size cut-off of 1 m of length to define the extinct marine megafauna. Based on this definition, we list 706 taxa belonging to eight main groups. We found that the extinct marine megafauna was conspicuous over the Phanerozoic and ubiquitous across all geological eras and periods, with the Mesozoic, especially the Cretaceous, having the greatest number of taxa. Marine reptiles include the largest size recorded (21 m; Shonisaurus sikanniensis) and contain the highest number of extinct marine megafaunal taxa. This contrasts with today’s assemblage, where marine animals achieve sizes of >30 m. The extinct marine megafaunal taxa were found to be well-represented in the Paleobiology Database, but not better sampled than their smaller counterparts. Among the extinct marine megafauna, there appears to be an overall increase in body size through time. Most extinct megafaunal taxa were inferred to be macropredators preferentially living in coastal environments. Across the Phanerozoic, megafaunal species had similar extinction risks as smaller species, in stark contrast to modern oceans where the large species are most affected by human perturbations. Our work represents a first step towards a better understanding of the marine megafauna that lived in the geological past. However, more work is required to expand our list of taxa and their traits so that we can obtain a more complete picture of their ecology and evolution

    Systematic investigation of polyurethane biomaterial surface roughness on human immune responses in vitro

    No full text
    It has been widely shown that biomaterial surface topography can modulate host immune response, but a fundamental understanding of how different topographies contribute to pro-inflammatory or anti-inflammatory responses is still lacking. To investigate the impact of surface topography on immune response, we undertook a systematic approach by analyzing immune response to eight grades of medical grade polyurethane of increasing surface roughness in three in vitro models of the human immune system. Polyurethane specimens were produced with defined roughness values by injection molding according to the VDI 3400 industrial standard. Specimens ranged from 0.1 μm to 18 μm in average roughness (Ra), which was confirmed by confocal scanning microscopy. Immunological responses were assessed with THP-1-derived macrophages, human peripheral blood mononuclear cells (PBMCs), and whole blood following culture on polyurethane specimens. As shown by the release of pro-inflammatory and anti-inflammatory cytokines in all three models, a mild immune response to polyurethane was observed, however, this was not associated with the degree of surface roughness. Likewise, the cell morphology (cell spreading, circularity, and elongation) in THP-1-derived macrophages and the expression of CD molecules in the PBMC model on T cells (HLA-DR and CD16), NK cells (HLA-DR), and monocytes (HLA-DR, CD16, CD86, and CD163) showed no influence of surface roughness. In summary, this study shows that modifying surface roughness in the micrometer range on polyurethane has no impact on the pro-inflammatory immune response. Therefore, we propose that such modifications do not affect the immunocompatibility of polyurethane, thereby supporting the notion of polyurethane as a biocompatible material

    Charge order in NaV2O5 studied by EPR

    No full text
    We present angular dependent EPR measurements in NaV2O5 at X-band frequencies in the temperature range 4.2 K < T < 670 K. A detailed analysis in terms of the antisymmetric Dzyaloshinski-Moriya and the anisotropic exchange interactions yields the following scheme of charge order: On decreasing temperature a quarter-filled ladder with strong charge disproportions, existing for T > 100 K, is followed by zig-zag charge-order fluctuations which become long-range and static below T_SP=34 K.Comment: 4 pages including 3 figures, submitted to Phys. Rev. Let

    Molecular Cloning and Functional Characterization of a Unique Mammalian Cardiac Na v Channel Isoform with Low Sensitivity to the Synthetic Inactivation Inhibitor (Ϫ)-(S)-6-Amino-␣-[(4- diphenylmethyl-1-piperazinyl)-methyl]-9H-purine-9-ethanol (SDZ 211-939

    No full text
    ABSTRACT Cardiac voltage-dependent sodium channels (Na v ) are drug targets for synthetic inactivation inhibitors typified by (Ϯ)-4-[3-(4-diphenylmethyl-1-piperazinyl)-2-hydroxy propoxy]-1H-indole-2-carbonitrile (DPI 201-106), of which the molecular mode of action is not yet defined. The previous observation by Mevissen and coworkers in 2001 of the electrophysiological ineffectiveness of DPI 201-106 in the bovine heart, in contrast to other species, offers the opportunity for investigating these open questions. We now report about the molecular cloning, expression in Xenopus laevis oocytes, and electrophysiological characterization of a unique bovine heart sodium channel. Although the predicted 2022-amino acid bovine heart sodium channel (bH1) shares 92% identity with the rat and human isoforms and normal gating properties, it displays drastically reduced sensitivity to (Ϫ)-(S)-6-amino-␣-[(4-diphenylmethyl-1-piperazinyl)-methyl]-9H-purine-9-ethanol (SDZ 211-939). Experimental results with Anemonia sulcata toxin II (0.1-2.5 M) exclude the possibility of an overall insensitivity of this isoform to various sodium channel modulators. The binding of SDZ 211-939 seems to be largely unaffected (EC 50 of 10.3 and 10.6 M for bovine and rat isoforms, respectively) but the corresponding efficacy in bovine (V m of 0.15) is approximately 5 times smaller compared with the rat heart isoform (V m of 0.69). The comparison of the primary structure of bH1 to other sodium channels and the gating properties obtained in presence or absence of SDZ 211-939 revealed a high degree of similarity. Whether the mechanism of channel modulation depends on the interaction of synthetic modulators with some possibly voltageindependent part of the inactivation machinery needs to be determined
    corecore