3,062 research outputs found
Dual-band, double-negative, polarization-independent metamaterial for the visible spectrum
We present the first dual-band negative index metamaterial that operates in
the visible spectrum. The optimized four-functional-layer metamaterial
structure exhibits the first double-negative (i.e., simultaneously negative
permittivity and permeability) band in the red region of the visible spectrum
with a figure of merit of 1.7 and the second double-negative band in the green
region of the visible spectrum with a figure of merit of 3.2. The optical
behavior of the proposed structure is independent of the polarization of the
incident field. This low-loss metamaterial structure can be treated as a
modified version of a fishnet metamaterial structure with an additional metal
layer of different thickness in a single functional layer. The additional metal
layer extends the diluted plasma frequency deep into the visible spectrum above
the second order magnetic resonance of the structure, hence provides a dual
band operation with simultaneously negative effective permittivity and
permeability. Broadband metamaterials with multiple negative index bands may be
possible with the same technique by employing higher order magnetic resonances.
The structure can be fabricated with standard microfabrication techniques that
have been used to fabricate fishnet metamaterial structures.Comment: 26 Pages, 6 Figures, 2 Tables, 2 Medi
Plasmonic Superlens Imaging Enhanced by Incoherent Active Convolved Illumination
We introduce a loss compensation method to increase the resolution of
near-field imaging with a plasmonic superlens that relies on the convolution of
a high spatial frequency passband function with the object. Implementation with
incoherent light removes the need for phase information. The method is
described theoretically and numerical imaging results with artificial noise are
presented, which display enhanced resolution of a few tens of nanometers, or
around one-fifteenth of the free space wavelength. A physical implementation of
the method is designed and simulated to provide a proof-of-principle, and steps
toward experimental implementation are discussed
Enhancing the resolution of hyperlens by the compensation of losses without gain media
We present a method to improve the resolution of available hyperlenses in the
literature. In this method, we combine the operation of hyperlens with the
recently proposed plasmon injection scheme for loss compensation in
metamaterials. Image of an object, which is otherwise not resolvable by the
hyperlens alone, was reconstructed up to the minimum feature size of one
seventh of the free-space wavelength.Comment: 4 pages, 5 figure
Negative Refraction Gives Rise to the Klein Paradox
Electromagnetic negative refraction in metamaterials has attracted
increasingly great interest, since its first experimental verification in 2001.
It potentially leads to the applications superior to conventional devices
including compact antennas for mobile stations, imaging beyond the diffraction
limit, and high-resolution radars, not to mention the anamolous wave
propagation in fundamental optics. Here, we report how metamaterials could be
used to simulate the "negative refraction of spin-zero particles interacting
with a strong potential barrier", which gives rise to the Klein paradox--a
counterintuitive relativistic process. We address the underlying physics of
analogous wave propagation behaviours in those two entirely different domains
of quantum and classical.Comment: 4 journal pages, 2 figure
Workforce Efficiency Increase For The Online Sales In-Store Picking Operation
The online food retailing got more attention to itself with the global coronavirus outbreak. Online marketing growth rate reached above 40% in the lockdown months. It became more important to deliver the orders faster than opponents. This study examines one of the biggest food retails company’s in-store picking operation for workforce efficiency increase. The picker job description and daily work routines observed through observation forms. The results are validated by data extracted from the Collectify system, which is used for picking operation and has all the time stamp of picker’s action. Analyzing data and combining with the output of observation forms, the new picking model proposed for the fresh departments (meat, deli, fruit & vegetable) products. Having two weeks of trial and after realizing the results with the Collectify system data, the new model helped operating costs decrease by 7,7% in the picking operation
Turkish-Russian adversarial collaboration in Syria, Libya, and Nagorno-Karabakh
Russia and Turkey are backing opposing warring parties in three active conflicts. HowÂever, this adversarial positioning has not hindered cooperation between Moscow and Ankara. They reign in opposing sides and, in effect, stage-manage their respective theatres of wars. Through multilateral arrangements, Europe is an enabler of TurÂkey's position and could leverage its support to push Ankara to cooperate more effecÂtively with its Western partners. (author's abstract
BUTCHERS SCHEDULING MODEL EXAMINATION BY TIME STUDY OBSERVATIONS
The study examines the workforce management and the scheduling model in the meat department of the grocery retail company to evaluate an opportunity to increase efficiency. The work structure of the butchers has been observed and according to the time study guideline based on work structures, twelve-time studies conducted in different stores to evaluate the current working methodologies. New scheduling approach created according to sales correlation, seniority of the employee and empirical data obtained from the time studies. Before and after analysis have been conducted based on the scheduling approaches. Thus, new approach leveraged the company sales by 7 % increase
Combining Features and Semantics for Low-level Computer Vision
Visual perception of depth and motion plays a significant role in understanding and navigating the environment.
Reconstructing outdoor scenes in 3D and estimating the motion from video cameras are of utmost importance for applications like autonomous driving.
The corresponding problems in computer vision have witnessed tremendous progress over the last decades, yet some aspects still remain challenging today. Striking examples are reflecting and textureless surfaces or large motions which cannot be easily recovered using traditional local methods. Further challenges include occlusions, large distortions and difficult lighting conditions. In this thesis, we propose to overcome these challenges by modeling non-local interactions leveraging semantics and contextual information.
Firstly, for binocular stereo estimation, we propose to regularize over larger areas on the image using object-category specific disparity proposals which we sample using inverse graphics techniques based on a sparse disparity estimate and a semantic segmentation of the image. The disparity proposals encode the fact that objects of certain categories are not arbitrarily shaped but typically exhibit regular structures. We integrate them as non-local regularizer for the challenging object class 'car' into a superpixel-based graphical model and demonstrate its benefits especially in reflective regions.
Secondly, for 3D reconstruction, we leverage the fact that the larger the reconstructed area, the more likely objects of similar type and shape will occur in the scene. This is particularly true for outdoor scenes where buildings and vehicles often suffer from missing texture or reflections, but share similarity in 3D shape. We take advantage of this shape similarity by localizing objects using detectors and jointly reconstructing them while learning a volumetric model of their shape. This allows to reduce noise while completing missing surfaces as objects of similar shape benefit from all observations for the respective category. Evaluations with respect to LIDAR ground-truth on a novel challenging suburban dataset show the advantages of modeling structural dependencies between objects.
Finally, motivated by the success of deep learning techniques in matching problems, we present a method for learning context-aware features for solving optical flow using discrete optimization. Towards this goal, we present an efficient way of training a context network with a large receptive field size on top of a local network using dilated convolutions on patches. We perform feature matching by comparing each pixel in the reference image to every pixel in the target image, utilizing fast GPU matrix multiplication. The matching cost volume from the network's output forms the data term for discrete MAP inference in a pairwise Markov random field. Extensive evaluations reveal the importance of context for feature matching.Die visuelle Wahrnehmung von Tiefe und Bewegung spielt eine wichtige Rolle bei dem Verständnis und der Navigation in unserer Umwelt. Die 3D Rekonstruktion von Szenen im Freien und die Schätzung der Bewegung von Videokameras sind von größter Bedeutung für Anwendungen, wie das autonome Fahren.
Die Erforschung der entsprechenden Probleme des maschinellen Sehens hat in den letzten Jahrzehnten enorme Fortschritte gemacht, jedoch bleiben einige Aspekte heute noch ungelöst. Beispiele hierfür sind reflektierende und texturlose Oberflächen oder große Bewegungen, bei denen herkömmliche lokale Methoden häufig scheitern. Weitere Herausforderungen sind niedrige Bildraten, Verdeckungen, große Verzerrungen und schwierige Lichtverhältnisse. In dieser Arbeit schlagen wir vor nicht-lokale Interaktionen zu modellieren, die semantische und kontextbezogene Informationen nutzen, um diese Herausforderungen zu meistern.
Für die binokulare Stereo Schätzung schlagen wir zuallererst vor zusammenhängende Bereiche mit objektklassen-spezifischen Disparitäts Vorschlägen zu regularisieren, die wir mit inversen Grafik Techniken auf der Grundlage einer spärlichen Disparitätsschätzung und semantischen Segmentierung des Bildes erhalten. Die Disparitäts Vorschläge kodieren die Tatsache, dass die Gegenstände bestimmter Kategorien nicht willkürlich geformt sind, sondern typischerweise regelmäßige Strukturen aufweisen. Wir integrieren sie für die komplexe Objektklasse 'Auto' in Form eines nicht-lokalen Regularisierungsterm in ein Superpixel-basiertes grafisches Modell und zeigen die Vorteile vor allem in reflektierenden Bereichen.
Zweitens nutzen wir für die 3D-Rekonstruktion die Tatsache, dass mit der Größe der rekonstruierten Fläche auch die Wahrscheinlichkeit steigt, Objekte von ähnlicher Art und Form in der Szene zu enthalten. Dies gilt besonders für Szenen im Freien, in denen Gebäude und Fahrzeuge oft vorkommen, die unter fehlender Textur oder Reflexionen leiden aber ähnlichkeit in der Form aufweisen. Wir nutzen diese ähnlichkeiten zur Lokalisierung von Objekten mit Detektoren und zur gemeinsamen Rekonstruktion indem ein volumetrisches Modell ihrer Form erlernt wird. Dies ermöglicht auftretendes Rauschen zu reduzieren, während fehlende Flächen vervollständigt werden, da Objekte ähnlicher Form von allen Beobachtungen der jeweiligen Kategorie profitieren. Die Evaluierung auf einem neuen, herausfordernden vorstädtischen Datensatz in Anbetracht von LIDAR-Entfernungsdaten zeigt die Vorteile der Modellierung von strukturellen Abhängigkeiten zwischen Objekten.
Zuletzt, motiviert durch den Erfolg von Deep Learning Techniken bei der Mustererkennung, präsentieren wir eine Methode zum Erlernen von kontextbezogenen Merkmalen zur Lösung des optischen Flusses mittels diskreter Optimierung. Dazu stellen wir eine effiziente Methode vor um zusätzlich zu einem Lokalen Netzwerk ein Kontext-Netzwerk zu erlernen, das mit Hilfe von erweiterter Faltung auf Patches ein großes rezeptives Feld besitzt. Für das Feature Matching vergleichen wir mit schnellen GPU-Matrixmultiplikation jedes Pixel im Referenzbild mit jedem Pixel im Zielbild. Das aus dem Netzwerk resultierende Matching Kostenvolumen bildet den Datenterm für eine diskrete MAP Inferenz in einem paarweisen Markov Random Field. Eine umfangreiche Evaluierung zeigt die Relevanz des Kontextes für das Feature Matching
- …