42 research outputs found

    AII amacrine cells discriminate between heterocellular and homocellular locations when assembling connexin36-containing gap junctions

    Get PDF
    Electrical synapses (gap junctions) rapidly transmit signals between neurons and are composed of connexins. In neurons, connexin36 (C×36) is the most abundant isoform; however, the mechanisms underlying formation of C×36-containing electrical synapses are unknown. We focus on homocellular and heterocellular gap junctions formed by an AII amacrine cell, a key interneuron found in all mammalian retinas. In mice lacking native C×36 but expressing a variant tagged with enhanced green fluorescent protein at the C-terminus (KO-C×36-EGFP), heterocellular gap junctions formed between AII cells and ON cone bipolar cells are fully functional, whereas homocellular gap junctions between two AII cells are not formed. A tracer injected into an AII amacrine cell spreads into ON cone bipolar cells but is excluded from other AII cells. Reconstruction of C×36-EGFP clusters on an AII cell in the KO-C×36-EGFP genotype confirmed that the number, but not average size, of the clusters is reduced - as expected for AII cells lacking a subset of electrical synapses. Our studies indicate that some neurons exhibit at least two discriminatory mechanisms for assembling C×36. We suggest that employing different gapjunction- forming mechanisms could provide the means for a cell to regulate its gap junctions in a target-cell-specific manner, even if these junctions contain the same connexin

    Differential Distribution of Retinal Ca2+/Calmodulin-Dependent Kinase II (CaMKII) Isoforms Indicates CaMKII-β and -δ as Specific Elements of Electrical Synapses Made of Connexin36 (Cx36)

    Get PDF
    AII amacrine cells are essential interneurons of the primary rod pathway and transmit rod-driven signals to ON cone bipolar cells to enable scotopic vision. Gap junctions made of connexin36 (Cx36) mediate electrical coupling among AII cells and between AII cells and ON cone bipolar cells. These gap junctions underlie a remarkable degree of plasticity and are modulated by different signaling cascades. In particular, Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been characterized as an important regulator of Cx36, capable of potentiating electrical coupling in AII cells. However, it is unclear which CaMKII isoform mediates this effect. To obtain a more detailed understanding of the isoform composition of CaMKII at retinal gap junctions, we analyzed the retinal distribution of all four CaMKII isoforms using confocal microscopy. These experiments revealed a differential distribution of CaMKII isoforms: CaMKII-α was strongly expressed in starburst amacrine cells, which are known to lack electrical coupling. CaMKII-β was abundant in OFF bipolar cells, which form electrical synapses in the outer and the inner retina. CaMKII-γ was diffusely distributed across the entire retina and could not be assigned to a specific cell type. CaMKII-δ labeling was evident in bipolar and AII amacrine cells, which contain the majority of Cx36-immunoreactive puncta in the inner retina. We double-labeled retinas for Cx36 and the four CaMKII isoforms and revealed that the composition of the CaMKII enzyme differs between gap junctions in the outer and the inner retina: in the outer retina, only CaMKII-β colocalized with Cx36-containing gap junctions, whereas in the inner retina, CaMKII-β and -δ colocalized with Cx36. This finding suggests that gap junctions in the inner and the outer retina may be regulated differently although they both contain the same connexin. Taken together, our study identifies CaMKII-β and -δ as Cx36-specific regulators in the mouse retina with CaMKII-δ regulating the primary rod pathway

    Connexin30.2:<i>In vitro</i> interaction with connexin36 in hela cells and expression in AII amacrine cells and intrinsically photosensitive ganglion cells in the mouse retina

    Get PDF
    Electrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined. In the primary rod pathway, gap junctions play a crucial role, coupling AII amacrine cells among each other and to ON cone bipolar cells. Although it has long been known that connexin36 and connexin45 are necessary for the proper functioning of this most sensitive rod pathway, differences between homocellular AII/AII gap junctions and AII/ON bipolar cell gap junctions suggested the presence of an additional connexin in AII amacrine cells. Here, we used a connexin30.2-lacZ mouse line to study the expression of connexin30.2 in the retina. We show that connexin30.2 is expressed in intrinsically photosensitive ganglion cells and AII amacrine cells. Moreover, we tested whether connexin30.2 and connexin36 – both expressed in AII amacrine cells – are able to interact with each other and are deposited in the same gap junctional plaques. Using newly generated anti-connexin30.2 antibodies, we show in HeLa cells that both connexins are indeed able to interact and may form heteromeric channels: both connexins were co-immunoprecipitated from transiently transfected HeLa cells and connexin30.2 gap junction plaques became significantly larger when co-expressed with connexin36. These data suggest that connexin36 is able to form heteromeric gap junctions with another connexin. We hypothesize that co-expression of connexin30.2 and connexin36 may endow AII amacrine cells with the means to differentially regulate its electrical coupling to different synaptic partners

    Structural and functional diversity of connexin genes in the mouse and human genome

    No full text
    Gap junctions are clustered channels between contacting cells through which direct intercellular communication via diffusion of ions and metabolites can occur. Two hemichannels, each built up of six connexin protein subunits in the plasma membrane of adjacent cells, can dock to each other to form conduits between cells. We have recently screened mouse and human genomic data bases and have found 19 connexin (Cx) genes in the mouse genome and 20 connexin genes in the human genome. One mouse connexin gene and two human connexin genes do not appear to have orthologs in the other genome. With three exceptions, the characterized connexin genes comprise two exons whereby the complete reading frame is located on the second exon. Targeted ablation of eleven mouse connexin genes revealed basic insights into the functional diversity of the connexin gene family. In addition, the phenotypes of human genetic disorders caused by mutated connexin genes further complement our understanding of connexin functions in the human organism. In this review we compare currently identified connexin genes in both the mouse and human genome and discuss the functions of gap junctions deduced from targeted mouse mutants and human genetic disorders

    Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice

    No full text
    Recent evidence suggests that electrotonic coupling is an important mechanism for neuronal synchronisation in the mammalian cortex and hippocampus. Various types of network oscillations have been shown to depend on, or be sharpened by, gap junctions between inhibitory interneurones or excitatory projection cells. Here we made use of a targeted disruption of the gene coding for Cx36, a recently discovered neuronal gap junction subunit, to analyse its role in hippocampal network behaviour. Mice lacking Cx36 are viable and lack obvious morphological or behavioural abnormalities. Stimulation of afferent and efferent fibre pathways in hippocampal slices revealed a largely normal function of the synaptic circuitry, including tetanically evoked network oscillations. Spontaneous sharp waves and ripple (∼200 Hz) oscillations, however, occurred less frequently in slices from Cx36 -/- mice, and ripples were slightly slower than in littermate controls. Moreover, epileptiform discharges elicited by 4-aminopyridine were attenuated in slices from Cx36 -/- mice. Our findings indicate that Cx36 plays a role in the generation of certain forms of network synchronisation in the hippocampus, namely sharp wave-ripple complexes and hypersynchronous epileptiform discharges
    corecore