6 research outputs found

    Progress and harmonization of gene editing to treat human diseases: Proceeding of COST Action CA21113 GenE-HumDi

    No full text
    The European Cooperation in Science and Technology (COST) is an intergovernmental organization dedicated to funding and coordinating scientific and technological research in Europe, fostering collaboration among researchers and institutions across countries. Recently, COST Action funded the "Genome Editing to treat Human Diseases" (GenE-HumDi) network, uniting various stakeholders such as pharmaceutical companies, academic institutions, regulatory agencies, biotech firms, and patient advocacy groups. GenE-HumDi's primary objective is to expedite the application of genome editing for therapeutic purposes in treating human diseases. To achieve this goal, GenE-HumDi is organized in several working groups, each focusing on specific aspects. These groups aim to enhance genome editing technologies, assess delivery systems, address safety concerns, promote clinical translation, and develop regulatory guidelines. The network seeks to establish standard procedures and guidelines for these areas to standardize scientific practices and facilitate knowledge sharing. Furthermore, GenE-HumDi aims to communicate its findings to the public in accessible yet rigorous language, emphasizing genome editing's potential to revolutionize the treatment of many human diseases. The inaugural GenE-HumDi meeting, held in Granada, Spain, in March 2023, featured presentations from experts in the field, discussing recent breakthroughs in delivery methods, safety measures, clinical translation, and regulatory aspects related to gene editing

    Evolution of CRISPR-associated endonucleases as inferred from resurrected proteins

    No full text
    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated Cas9 is an effector protein that targets invading DNA and plays a major role in the prokaryotic adaptive immune system. Although Streptococcus pyogenes CRISPR-Cas9 has been widely studied and repurposed for applications including genome editing, its origin and evolution are poorly understood. Here, we investigate the evolution of Cas9 from resurrected ancient nucleases (anCas) in extinct firmicutes species that last lived 2.6 billion years before the present. We demonstrate that these ancient forms were much more flexible in their guide RNA and protospacer-adjacent motif requirements compared with modern-day Cas9 enzymes. Furthermore, anCas portrays a gradual palaeoenzymatic adaptation from nickase to double-strand break activity, exhibits high levels of activity with both single-stranded DNA and single-stranded RNA targets and is capable of editing activity in human cells. Prediction and characterization of anCas with a resurrected protein approach uncovers an evolutionary trajectory leading to functionally flexible ancient enzymes.This work has been supported by grant nos. PID2019-109087RB-I00 (to R.P.-J.) and RTI2018-101223-B-I00 and PID2021-127644OB-I00 (to L.M.) from the Spanish Ministry of Science and Innovation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 964764 (to R.P.-J.). The content presented in this document represents the views of the authors, and the European Commission has no liability in respect to the content. We acknowledge financial support from the Spanish Foundation for the Promotion of Research of Amyotrophic Lateral Sclerosis. A.F. acknowledges Spanish Center for Biomedical Network Research on Rare Diseases (CIBERE) intramural funds (no. ER19P5AC756/2021). F.J.M.M. acknowledges research support by Conselleria d’Educació, Investigació, Cultura i Esport from Generalitat Valenciana, research project nos. PROMETEO/2017/129 and PROMETEO/2021/057. M.M. acknowledges funding from CIBERER (grant no. ER19P5AC728/2021). The work has received funding from the Regional Government of Madrid (grant no. B2017/BMD3721 to M.A.M.-P.) and from Instituto de Salud Carlos III, cofounded with the European Regional Development Fund ‘A way to make Europe’ within the National Plans for Scientific and Technical Research and Innovation 2017–2020 and 2021–2024 (nos. PI17/1659, PI20/0429 and IMP/00009; to M.A.M.-P. B.P.K. was supported by an MGH ECOR Howard M. Goodman Award and NIH P01 HL142494. We thank H. Stutzman for assistance with cloning plasmids, and Z. Herbert and M. Berkeley from the Molecular Biology Core Facilities at the Dana-Farber Cancer Institute for assistance with NextSeq sequencing

    Heterologous erythromycin production across strain and plasmid construction

    No full text
    The establishment of erythromycin production within the heterologous host E. coli marked an accomplishment in genetic transfer capacity. Namely, over 20 genes and 50 kb of DNA was introduced to E. coli for successful heterologous biosynthetic reconstitution. However, the prospect for production levels that approach those of the native host requires the application of engineering tools associated with E. coli. In this report, metabolic and genomic engineering were implemented to improve the E. coli cellular background and the plasmid platform supporting heterologous erythromycin formation. Results include improved plasmid stability and metabolic support for biosynthetic product formation. Specifically, the new plasmid design for erythromycin formation allowed for ≥89% stability relative to current standards (20% stability). In addition, the new strain (termed LF01) designed to improve carbon flow to the erythromycin biosynthetic pathway provided a 400% improvement in titer level. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:271-276, 2018

    CRISPR-Analytics (CRISPR-A): A platform for precise analytics and simulations for gene editing

    No full text
    Gene editing characterization with currently available tools does not always give precise relative proportions among the different types of gene edits present in an edited bulk of cells. We have developed CRISPR-Analytics, CRISPR-A, which is a comprehensive and versatile genome editing web application tool and a nextflow pipeline to give support to gene editing experimental design and analysis. CRISPR-A provides a robust gene editing analysis pipeline composed of data analysis tools and simulation. It achieves higher accuracy than current tools and expands the functionality. The analysis includes mock-based noise correction, spike-in calibrated amplification bias reduction, and advanced interactive graphics. This expanded robustness makes this tool ideal for analyzing highly sensitive cases such as clinical samples or experiments with low editing efficiencies. It also provides an assessment of experimental design through the simulation of gene editing results. Therefore, CRISPR-A is ideal to support multiple kinds of experiments such as double-stranded DNA break-based engineering, base editing (BE), primer editing (PE), and homology-directed repair (HDR), without the need of specifying the used experimental approach.This work was supported by the European Commission (European Union Horizon 2020 grant 825825 to MG), Ramón y Cajal program (grant RYC-2015-17734 to MG), Fundación Ramón Areces (grant “Advanced gene editing technologies to restore LAMA2 on merosin-deficient congenital muscular dystrophy type 1A” to MG) and Ministerio de Ciencia e Innovación de España (Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 «Advanced methodologies for precise and efficient gene delivery» grant PID2020-118597RB-I00 to MG). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Transcription start site associated RNAs in bacteria

    No full text
    Here, we report the genome-wide identification of small RNAs associated with transcription start sites (TSSs), termed tssRNAs, in Mycoplasma pneumoniae. tssRNAs were also found to be present in a different bacterial phyla, Escherichia coli. Similar to the recently identified promoter-associated tiny RNAs (tiRNAs) in eukaryotes, tssRNAs are associated with active promoters. Evidence suggests that these tssRNAs are distinct from previously described abortive transcription RNAs. ssRNAs have an average size of 45 bases and map exactly to the beginning of cognate full-length transcripts and to cryptic TSSs. Expression of bacterial tssRNAs requires factors other than the standard RNA polymerase holoenzyme. We have found that the RNA polymerase is halted at tssRNA positions in vivo, which may indicate that a pausing mechanism exists to prevent transcription in the absence of genes. These results suggest that small RNAs associated with TSSs could be a universal feature of bacterial transcription.This work was supported by an European Research council (ERC) advanced grant, the Fundación Marcelino Botín, the Spanish Ministry of Research and ICREA (Institució Catalana de Recerca i Estudis Avançats
    corecore