45 research outputs found

    Detecting beer intake by unique metabolite patterns

    Get PDF
    Evaluation of the health related effects of beer intake is hampered by the lack of accurate tools for assessing intakes (biomarkers). Therefore, we identified plasma and urine metabolites associated with recent beer intake by untargeted metabolomics and established a characteristic metabolite pattern representing raw materials and beer production as a qualitative biomarker of beer intake. In a randomized, crossover, single-blinded meal study (MSt1), 18 participants were given, one at a time, four different test beverages: strong, regular, and nonalcoholic beers and a soft drink. Four participants were assigned to have two additional beers (MSt2). In addition to plasma and urine samples, test beverages, wort, and hops extract were analyzed by UPLC-QTOF. A unique metabolite pattern reflecting beer metabolome, including metabolites derived from beer raw material (i.e., <i>N</i>-methyl tyramine sulfate and the sum of iso-α-acids and tricyclohumols) and the production process (i.e., pyro-glutamyl proline and 2-ethyl malate), was selected to establish a compliance biomarker model for detection of beer intake based on MSt1. The model predicted the MSt2 samples collected before and up to 12 h after beer intake correctly (AUC = 1). A biomarker model including four metabolites representing both beer raw materials and production steps provided a specific and accurate tool for measurement of beer consumption

    Structure-revealing data fusion

    Get PDF
    BACKGROUND: Analysis of data from multiple sources has the potential to enhance knowledge discovery by capturing underlying structures, which are, otherwise, difficult to extract. Fusing data from multiple sources has already proved useful in many applications in social network analysis, signal processing and bioinformatics. However, data fusion is challenging since data from multiple sources are often (i) heterogeneous (i.e., in the form of higher-order tensors and matrices), (ii) incomplete, and (iii) have both shared and unshared components. In order to address these challenges, in this paper, we introduce a novel unsupervised data fusion model based on joint factorization of matrices and higher-order tensors. RESULTS: While the traditional formulation of coupled matrix and tensor factorizations modeling only shared factors fails to capture the underlying structures in the presence of both shared and unshared factors, the proposed data fusion model has the potential to automatically reveal shared and unshared components through modeling constraints. Using numerical experiments, we demonstrate the effectiveness of the proposed approach in terms of identifying shared and unshared components. Furthermore, we measure a set of mixtures with known chemical composition using both LC-MS (Liquid Chromatography - Mass Spectrometry) and NMR (Nuclear Magnetic Resonance) and demonstrate that the structure-revealing data fusion model can (i) successfully capture the chemicals in the mixtures and extract the relative concentrations of the chemicals accurately, (ii) provide promising results in terms of identifying shared and unshared chemicals, and (iii) reveal the relevant patterns in LC-MS by coupling with the diffusion NMR data. CONCLUSIONS: We have proposed a structure-revealing data fusion model that can jointly analyze heterogeneous, incomplete data sets with shared and unshared components and demonstrated its promising performance as well as potential limitations on both simulated and real data. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2105-15-239) contains supplementary material, which is available to authorized users

    A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome

    Get PDF
    Fruit and vegetable consumption has been associated with several health benefits; however the mechanisms are largely unknown at the biochemical level. Our research aims to investigate whether plasma metabolome profiling can reflect biological effects after feeding rats with raw apple by using an untargeted UPLC-ESI-TOF-MS based metabolomics approach in both positive and negative mode. Eighty young male rats were randomised into groups receiving daily 0, 5 or 10 g fresh apple slices, respectively, for 13 weeks. During weeks 3-6 some of the animals were receiving 4 mg/ml 1,2-dimethylhydrazine dihydrochloride (DMH) once a week. Plasma samples were taken at the end of the intervention and among all groups, about half the animals were 12 h fasted. An initial ANOVA-simultaneous component analysis with a three-factor or two-factor design was employed in order to isolate potential metabolic variations related to the consumption of fresh apples. Partial least squares-discriminant analysis was then applied in order to select discriminative features between plasma metabolites in control versus apple fed rats and partial least squares modelling to reveal possible dose response. The findings indicate that in laboratory rats apple feeding may alter the microbial amino acid fermentation, lowering toxic metabolites from amino acids metabolism and increasing metabolism into more protective products. It may also delay lipid and amino acid catabolism, gluconeogenesis, affect other features of the transition from the postprandial to the fasting state and affect steroid metabolism by suppressing the plasma level of stress corticosteroids, certain mineralocorticoids and oxidised bile acid metabolites. Several new hypotheses regarding the cause of health effects from apple intake can be generated from this study for further testing in humans. © 2013 Springer Science+Business Media New York

    Analysis of the SYSDIET Healthy Nordic Diet randomized trial based on metabolic profiling reveal beneficial effects on glucose metabolism and blood lipids

    Get PDF
    Background & aims Intake assessment in multicenter trials is challenging, yet important for accurate outcome evaluation. The present study aimed to characterize a multicenter randomized controlled trial with a healthy Nordic diet (HND) compared to a Control diet (CD) by plasma and urine metabolic profiles and to associate them with cardiometabolic markers. MethodsDuring 18-24 weeks of intervention, 200 participants with metabolic syndrome were advised at six centres to eat either HND (e.g. whole-grain products, berries, rapeseed oil, fish and low-fat dairy) or CD while being weight stable. Of these 166/159 completers delivered blood/urine samples. Metabolic profiles of fasting plasma and 24 h pooled urine were analysed to identify characteristic diet-related patterns. Principal components analysis (PCA) scores (i.e. PC1 and PC2 scores) were used to test their combined effect on blood glucose response (primary endpoint), serum lipoproteins, triglycerides, and inflammatory markers. ResultsThe profiles distinguished HND and CD with AUC of 0.96 ± 0.03 and 0.93 ± 0.02 for plasma and urine, respectively, with limited heterogeneity between centers, reflecting markers of key foods. Markers of fish, whole grain and polyunsaturated lipids characterized HND, while CD was reflected by lipids containing palmitoleic acid. The PC1 scores of plasma metabolites characterizing the intervention is associated with HDL (β = 0.05; 95% CI: 0.02, 0.08; P = 0.001) and triglycerides (β = -0.06; 95% CI: -0.09, -0.03; P ConclusionsPlasma and urine metabolite profiles from SYSDIET reflected good compliance with dietary recommendations across the region. The scores of metabolites characterizing the diets associated with outcomes related with cardio-metabolic risk. Our analysis therefore offers a novel way to approach a per protocol analysis with a balanced compliance assessment in larger multicentre dietary trials.The study was registered at clinicaltrials.gov with NCT00992641.</p

    A LC-MS metabolomics approach to investigate the effect of raw apple intake in the rat plasma metabolome

    Get PDF
    Fruit and vegetable consumption has been associated with several health benefits; however the mechanisms are largely unknown at the biochemical level. Our research aims to investigate whether plasma metabolome profiling can reflect biological effects after feeding rats with raw apple by using an untargeted UPLC-ESI-TOF-MS based metabolomics approach in both positive and negative mode. Eighty young male rats were randomised into groups receiving daily 0, 5 or 10 g fresh apple slices, respectively, for 13 weeks. During weeks 3-6 some of the animals were receiving 4 mg/ml 1,2-dimethylhydrazine dihydrochloride (DMH) once a week. Plasma samples were taken at the end of the intervention and among all groups, about half the animals were 12 h fasted. An initial ANOVA-simultaneous component analysis with a three-factor or two-factor design was employed in order to isolate potential metabolic variations related to the consumption of fresh apples. Partial least squares-discriminant analysis was then applied in order to select discriminative features between plasma metabolites in control versus apple fed rats and partial least squares modelling to reveal possible dose response. The findings indicate that in laboratory rats apple feeding may alter the microbial amino acid fermentation, lowering toxic metabolites from amino acids metabolism and increasing metabolism into more protective products. It may also delay lipid and amino acid catabolism, gluconeogenesis, affect other features of the transition from the postprandial to the fasting state and affect steroid metabolism by suppressing the plasma level of stress corticosteroids, certain mineralocorticoids and oxidised bile acid metabolites. Several new hypotheses regarding the cause of health effects from apple intake can be generated from this study for further testing in humans. © 2013 Springer Science+Business Media New York

    Nutritional Metabolomics:Data Handling Strategies – examples using metabolic states and trans-fat exposures

    No full text

    Chemometric studies for classification of olive oils and detection of adulteration

    No full text
    Thesis (Master)--Izmir Institute of Technology, Food Engineering, Izmir, 2008Includes bibliographical references (leaves: 89-94)Text in English; Abstract: Turkish and Englishxv, 94 leavesThe aim of this study is to classify extra-virgin olive oils according to variety, geographical origin and harvest year and also to detect and quantify olive oil adulteration. In order to classify extra virgin olive oils, principal component analysis was applied on both fatty acid composition and middle infrared spectra. Spectral data was manipulated with a wavelet function prior to principal component analysis. Results revealed more successful classification of oils according geographical origin and variety using fatty acid composition than spectral data. However, each method has quite good ability to differentiate olive oil samples with respect to harvest year.Middle infrared spectra of all olive oil samples were related with fatty acid profile and free fatty acidity using partial least square analysis. Orthogonal signal correction and wavelet compression were applied before partial least square analysis.Correlation coefficient and relative error of prediction for oleic acid (highest amount fatty acid) were determined as 0.93 and 1.38, respectively. Also, partial least square regression resulted in 0.85 as R2 value and 0.085 as standard error of prediction value for free fatty acidity quantification.In adulteration part, spectral data manipulated with principal component and partial least square analysis, to distinguish adulterated and pure olive oil samples, and to quantify level of adulteration, respectively. The detection limit of monovarietal adulteration varied between 5 and 10% and R2 value of partial least square was determined as higher than 0.95. Hazelnut, corn-sunflower binary mixture, cottonseed and rapeseed oils can be detected in olive oil at levels higher than 10%, 5%, 5% and 5%, respectively

    Detection of adulteration of extra-virgin olive oil by chemometric analysis of mid-infrared spectral data

    Get PDF
    This study focuses on the detection and quantification of extra-virgin olive oil adulteration with different edible oils using mid-infrared (IR) spectroscopy with chemometrics. Mid-IR spectra were manipulated with wavelet compression previous to principal component analysis (PCA). Detection limit of adulteration was determined as 5% for corn-sunflower binary mixture, cottonseed and rapeseed oils. For quantification of adulteration, mid-IR spectral data were manipulated with orthogonal signal correction (OSC) and wavelet compression before partial least square (PLS) analysis. The results revealed that models predict the adulterants, corn-sunflower binary mixture, cottonseed and rapeseed oils, in olive oil with error limits of 1.04, 1.4 and 1.32, respectively. Furthermore, the data were analysed with a general PCA model and PLS discriminant analysis (PLS-DA) to observe the efficiency of the model to detect adulteration regardless of the type of adulterant oil. In this case, detection limit for adulteration is determined as 10%.EU Marie Curie Reintegration Grant CODA (MIRG-CT-2005-029134

    Differentiation of mixtures of monovarietal olive oils by mid-infrared spectroscopy and chemometrics

    Get PDF
    Fourier transform infrared (FT-IR) spectroscopy in combination with chemometric techniques has become a useful tool for authenticity determination of extra-virgin olive oils. Spectroscopic analysis of monovarietal extra-virgin olive oils obtained from three different olive cultivars (Erkence, Ayvalik and Nizip) and mixtures (Erkence-Nizip and Ayvalik-Nizip) of monovarietal olive oils was performed with an FT-IR spectrometer equipped with a ZnSe attenuated total reflection sample accessory and a deuterated tri-glycine sulfate detector. Using spectral data, principal component analysis successfully classified each cultivar and differentiated the mixtures from pure mono-varietal oils. Quantification of two different monovarietal oil mixtures (2-20%) is achieved using partial least square (PLS) regression models. Correlation coefficients (R2) of the proposed PLS regression models are 0.94 and 0.96 for the Erkence-Nizip and Ayvalik-Nizip mixtures, respectively. Cross-validation was applied to check the goodness of fit for the PLS regression models, and R 2 of the cross-validation was determined as 0.84 and 0.91, respectively, for the two mixtures.CODA (MIRG-CT-2005-029134) project supported by an EU Marie Curie Reintegration Gran

    Comparison of fatty acid profiles and mid-infrared spectral data for classification of olive oils

    Get PDF
    The composition of olive oils may vary depending on environmental and technological factors. Fatty acid profiles and Fourier-transform infrared (FT-IR) spectroscopy data in combination with chemometric methods were used to classify extra-virgin olive oils according to geographical origin and harvest year. Oils were obtained from 30 different areas of northern and southern parts of the Aegean Region of Turkey for two consecutive harvest years. Fatty acid composition data analyzed with principal component analysis was more successful in distinguishing northern olive oil samples from southern samples compared to spectral data. Both methods have the ability to differentiate olive oil samples with respect to harvest year. Partial least squares (PLS) analysis was also applied to detect a correlation between fatty acid profile and spectral data. Correlation coefficients (R2) of a calibration set for stearic, oleic, linoleic, arachidic and linolenic acids were determined as 0.83, 0.97, 0.97, 0.83 and 0.69, respectively. Fatty acid profiles were very effective in classification of oils with respect to geographic origin and harvest year. On the other hand, FT-IR spectra in combination with PLS could be a useful and rapid tool for the determination of some of the fatty acids of olive oils.CODA (MIRG-CT-2005-029134); EU Marie Curie Reintegration Gran
    corecore