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This study focuses on the detection and quantification of extra-virgin olive oil adulteration with different
edible oils using mid-infrared (IR) spectroscopy with chemometrics. Mid-IR spectra were manipulated
with wavelet compression previous to principal component analysis (PCA). Detection limit of adultera-
tion was determined as 5% for corn–sunflower binary mixture, cottonseed and rapeseed oils. For quanti-
fication of adulteration, mid-IR spectral data were manipulated with orthogonal signal correction (OSC)
and wavelet compression before partial least square (PLS) analysis. The results revealed that models pre-
dict the adulterants, corn–sunflower binary mixture, cottonseed and rapeseed oils, in olive oil with error
limits of 1.04, 1.4 and 1.32, respectively. Furthermore, the data were analysed with a general PCA model
and PLS discriminant analysis (PLS-DA) to observe the efficiency of the model to detect adulteration
regardless of the type of adulterant oil. In this case, detection limit for adulteration is determined as 10%.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Adulteration of food products involves the replacement of high-
cost ingredients with lower grade and cheaper substitutes (Tay,
Singh, Krishnan, & Gore, 2002). Due to its sensory quality and
nutritional benefits extra-virgin olive oil is often adulterated with
less expensive oils. Adulteration of olive oil is a serious problem
for regulatory agencies, oil suppliers and could also threat health
of consumers. Actually, blend edible oils can be prepared only for
suitable products, but if the resulting blend deviates from the mix-
ture proportions given on the label, or if the blend is traded as gen-
uine, it means the oil is adulterated (Ulberth & Buchgraber, 2000).
The edible oils widely employed in virgin olive oil adulteration can
be lower quality olive oil (refined or pomace olive oil) or other veg-
etable or seed oils such as corn, peanut, cottonseed, sunflower, soy-
bean and poppy seed oils (Harwood & Aparicio, 2000). Turkey is
one of the major olive oil producers in the World and cottonseed,
rapeseed, sunflower and corn oils with lower market price are
commonly used to adulterate olive oil.

There exist numerous methodologies to detect and quantify
vegetable or seed oils in olive oil. Techniques involving application
of chromatographic methods are commonly applied (Andrikopou-
los, Giannakis, & Tzamtzis, 2001; Christopoulou, Lazaraki, Koma-
itis, & Kaselimis, 2004; Dionisi, Prodolliet, & Tagliaferri, 1995;
Harwood & Aparicio, 2000).
ll rights reserved.

x: +90 232 750 6196.
u2@yahoo.com (B. Ozen).
However, methods of food adulteration have become more
sophisticated due to its economic profits. There is an increasing de-
mand for the development of new rapid and sensitive methods in-
stead of traditional time-consuming and expensive analysis
techniques. There are several studies about new emerging methods
mainly focusing on this subject. One of these studies involves with
the use of headspace autosampler directly coupled to a mass spec-
trometer (ChemSensor) to detect hazelnut oil adulteration (Peňa,
Cárdenas, Gallego, & Valcárcel, 2005). Total synchronous fluores-
cence (TSyF) spectroscopy was also employed to differentiate vir-
gin olive oil from olive-pomace, corn, sunflower, soybean,
rapeseed and walnut oils with PLS (Poulli, Mousdis, & Georgiou,
2007). In another study, analysis of sunflower, corn, peanut and
coconut oil adulterated olive oil by gas chromatography–mass
spectrometry in combination with class analogy and K nearest
neighbours resulted in prediction ability higher than 91% for adul-
terant detection and 88% for type of adulterant identification (Ca-
pote, Jiménez, & Luque de Castro, 2007). Moreover, an electronic
nose based on metal oxide semiconductor sensors was employed
for the determination of olive oil adulteration and supplied 95%
precision (Oliveros et al., 2002).

Application of spectroscopy which includes IR and Raman
techniques combined with chemometric methods is a relatively
new approach to determine authenticity of olive oil. Employment
of spectroscopic methods for the detection of authentication of
vegetable oils has firstly emerged in the middle of 90s (Baeten,
Meurens, Morales, & Aparicio, 1996; Lai, Kemsley, & Wilson,
1994, 1995; Wesley, Barnes, & McGill, 1995). Many further studies
were performed on the issue. Near-infrared (NIR), mid-infrared,
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Table 1
Percentages of sunflower, corn and olive oil in 2–20% adulterated mixtures.

Sunflower oil (%) Corn oil (%) Olive oil (%)

1 1 98
2 0 98
0 2 98
2.5 2.5 95
5 0 95
0 5 95
5 5 90
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and Raman spectroscopic techniques can quantify the amount of
olive-pomace oil adulteration in extra-virgin olive oil (0% and
100% in 5% increments by weight) with R2 value higher than
0.99 (Yang & Irudayaraj, 2001) for each technique. Christy, Kasem-
sumran, Du, and Ozaki (2004) studied NIR spectroscopy to detect
and quantify adulteration of olive oil with soybean, sunflower,
corn, walnut and hazelnut oils which resulted in error limits of
±0.57% (corn oil), ±1.32% (sunflower oil), ±0.96% (soybean oil),
±0.56% (walnut oil) and ±0.57% (hazelnut oil). Fourier-transform
infrared (FT-IR) spectroscopy equipped with a ZnSe-ATR accessory
was able to detect adulteration of virgin olive oil with hazelnut oil
at levels of 25% and higher (Ozen & Mauer, 2002). Baeten et al.
(2005) obtained better results in their study which involves appli-
cation of Raman and MIR spectroscopies for determination of the
level of hazelnut oil in olive oil (up to level of 8%). Analysis of FT-
IR data with discriminant analysis allowed classification of olive
oil and sunflower adulterated olive oil samples (20 ml/l) as pure
and adulterated. In the same study, PLS model developed to deter-
mine the level of mixing resulted in R2 value of validation set as
0.974, which indicated the success of the model (Tay et al.,
2002). Vlachos et al. (2006) also studied the determination of ol-
ive oil adulteration with vegetable oils using FT-IR and detection
limit for olive oil adulteration is 9% if the adulterant is corn oil
or sesame seed oil while it is lower (6%) if the adulterant is sun-
flower or soybean oil.

Adulteration of olive oil with combination of several oils has be-
come a problem for Turkish olive oil producers and consumers.
Especially corn–sunflower mixture has been used to adulterate ex-
tra-virgin olive oil. There are a limited number of published studies
focusing specifically on the issue of multiple blended oils used to
adulterate EVOO. A chromatographic approach with PLS was
applied for determination of cottonseed, olive, soybean and sun-
flower ternary and quaternary edible oil mixtures (Hajimahmoodi
et al., 2005). The relative standard error for each oil in mixed sam-
ples was specified as less than 10%. As the only example of spectro-
scopic approach, Özdemir and Öztürk (2007) focused on
quantification of binary and tertiary adulteration of olive oil with
sunflower and corn oil using NIR in conjunction with genetic in-
verse least square which resulted in SEP ranged between 1.42%
and 6.38% (vol/vol) for the ternary mixtures of olive, sunflower
and corn oil. However, there is not any study involving the use of
mid-IR spectroscopy for determination of ternary adulteration of
olive oil.

Also, it is important to be able to detect olive oil adulteration
regardless to the type of adulterant. Exceptionally, Capote et al.
(2007) used gas chromatography–mass spectrometry data manip-
ulated with soft independent modeling of class analogy (SIMCA)
and K nearest neighbours (KNN) to identify the oil used to adulter-
ate olive oil and were able to reach 88% correct type of adulterant
identification.

The aim of this study is to demonstrate the applicability of mid-
IR spectroscopy as a rapid analysis method to detect and quantify
adulteration of extra-virgin olive oil with vegetable oils (rapeseed,
cottonseed and corn–sunflower binary mixture) by constructing
(1) three independent models for cottonseed, rapeseed and sun-
flower–corn binary oil mixture adulterated olive oil samples and
(2) overall model including all adulterated samples.
10 0 90
0 10 90
7.5 7.5 85
10 5 85
5 10 85
10 10 80
15 5 80
5 15 80
20 0 80
0 20 80
2. Materials and methods

2.1. Samples

Extra-virgin olive oil samples which belong to 25 different loca-
tions of Aegean region of Turkey were obtained from the same ol-
ive oil producer. The samples were kept in dark glass bottles and
stored at 8 �C. Spectra of oils were obtained within two months
after receiving the oils from producer.

While mainly Ayvalik variety is cultivated in North Aegean re-
gion, Memecik is the dominant variety in South part of Aegean re-
gion. Corn, sunflower, rapeseed and cottonseed oils were
purchased from stores and blended with olive oil samples. For cot-
tonseed and rapeseed oils adulteration, four olive oil samples
belonging to north were blended with rapeseed and cottonseed
oils at 2–20% (vol/vol). For corn–sunflower oil adulteration,
corn–sunflower oil binary mixtures were prepared at different
concentrations (0–100% vol/vol) and mixed with blends of four
commercial olive oil samples produced in the North of Turkey at
2–20% (vol/vol). Composition of each corn–sunflower adulterated
olive oil sample was presented in Table 1.

2.2. FT-IR analysis

All infrared spectra (4000–650 cm�1) were acquired with a Per-
kin Elmer Spectrum 100 FT-IR spectrometer (Perkin Elmer Inc.,
Wellesley, MA). This instrument was equipped with a horizontal
attenuated total reflectance (HATR) sampling accessory (ZnSe crys-
tal) and a deuterated tri-glycine sulphate (DTGS) detector.

HATR accessory was used to collect the spectral data of oil. The
resolution was set at 2 cm�1 and the number of scans collected for
each spectrum was 128. ZnSe crystal was cleaned with hexane in
between sample runs. Measurements were conducted duplicate
or triplicate for each olive oil sample.

2.3. Multivariate analysis

Data analysis was performed using multivariate statistical
methods with SIMCA software (Umetrics, Sweden). 3620–2520
and 1875.5–675 cm�1 regions of FT-IR spectra were used in the
analysis.

In order to transform the data into a form suitable for PCA and
PLS, the data is often pre-treated. Within this concept spectral data
was scaled and mean centered. Also, wavelet analysis as a widely
used spectral compression technique preferentially employed be-
fore application of PCA and PLS (Eriksson et al., 2004; Trygg &
Wold, 1998). Its main abilities are compressing and de-noising
complicated signals. Daubechies-10 was chosen amongst wavelet
functions. PCA is a multivariate projection method designed to ex-
tract and display the systematic variation in a data matrix X and
can also be used to develop a modeling technique called SIMCA
which is one of the most commonly used class-modeling tools
in chemometrics. In SIMCA, PCA is performed for each class
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separately and this results in a PC model for each class (Massart,
Vanbeginste, Deming, Michotte, & Kaufman, 1988). A class space
is built whose boundary discriminates between the samples fitting
the class model and the samples that cannot be considered as
belonging to the studied class. Mathematical model of the class
should be defined and confidence interval that encloses the model
should be determined (Lanteri, Armanino, Perri, & Palopoli, 2002).

For quantification issues, whole observation data set was di-
vided into calibration and validation sets. Determination of sun-
flower–corn, cottonseed and rapeseed oil amount (%) in olive oil
was performed by PLS analysis, which relates FT-IR absorbance of
Fig. 1. The spectra of olive oil, corn oil and sunflower oil around (a) 3080–2800 cm�1 an
and rapeseed oils).
each adulterated sample (X block) with the percentages of adulter-
ant oil (Y block). In quantification studies, OSC in combination with
wavelet analysis was applied on spectral data. OSC is a signal cor-
rection technique and constructs a filter that removes the part def-
initely unrelated to Y from the spectral matrix X (Wold, Antti,
Lindgren, & Öhman, 1998). The ability of the PLS model was in-
spected with validation set. It is important to accurately determine
the number of components that should be included in the model
that is linked to the difference between the degree of fit and the
predictive ability. Degree of fit increases as the number of compo-
nents increases but predictive ability does not increase after a cer-
d (b) 2875.5–675 cm�1 region. (— olive oil, — sunflower and corn oils, — cottonseed
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tain model complexity. So, it is important to reach an optimal bal-
ance between fit and predictive ability. The predictability of the
models was tested by computing the standard error of calibration
(SEC) for the calibration data set and the standard error of predic-
tion (SEP) for the validation data set:

SEC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm
i¼1
ðŶ i � YiÞ2

M � 1

vuuut

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1
ðŶ i � YiÞ2

N

vuuut

Lower the error values for the selected data set, better the per-
formance of the model. As expected, the model tends to have smal-
ler R and larger error values during prediction.

PLS-DA is a modified form of PLS applied in classification and
discrimination problems. The main difference of PLS-DA from SIM-
CA is that a separate PCA model is constructed for each class using
Fig. 2. Coomans’ plots of (a) cottonseed oil (5–20%), (b) rapeseed oil (5–20%) and (c) corn
non-adulterated, N adulterated olive oil samples).

Table 2
PLS statistics for calibration and validation sets.

Adulterant Number of PCs Explained variation (%) Predictiv

Corn–sunflower 2 99 98.9
Cottonseed 3 99.2 97.9
Rapeseed 2 99.4 99.1
SIMCA whereas PLS-DA makes one model covering many classes
(Eriksson et al., 2004).

3. Results and discussions

From the 25 olive oil samples cultivated and produced in differ-
ent locations of the Aegean region, four olive oil samples from the
Northern regions were selected randomly, mixed and used as a
base for the adulterated test mixtures. In general, mainly the Ayva-
lik olive variety is cultivated in the North Aegean region and Mem-
ecik is the dominant olive variety cultivated in the Southern part of
this region and these varieties have major economic importance in
Turkey.

Mid-IR spectroscopy as a rapid and non-destructive analysis tool
was employed to detect adulteration. Olive oil spectra was com-
pared with the spectra of other oil samples. Fig. 1 presents typical
spectra of olive, sunflower, corn, cottonseed and rapeseed oil sam-
ples. Two distinct wavelength intervals with notable peaks were
provided in Fig. 1 to visualize the spectral differences. Peaks around
2800–3080 cm�1 are due to hydrogen stretching mode. Large peak
–sunflower binary oil mixture (5–20%) versus non-adulterated olive oil samples (d

e ability (%) R2 (calibration) SEC R2 (validation) SEP

0.99 0.78 0.98 1.04
0.99 0.49 0.95 1.4
0.994 0.48 0.93 1.32
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between 1700 and 1800 cm�1 could be attributed to C@O stretch-
ing, and C–O–C stretching and C–H bending in the region of 900–
1400 cm�1 could be easily observed (Tay et al., 2002). Changes in
the intensities of spectral bands of different oils are related to the
composition of molecular bonds absorbing at those regions. There
exists a notable difference between olive oil and adulterant oils in
the peak between 3010 and 3000 cm�1 resulting from the C–H
stretching vibration of the cis-double bonds (@CH). The intensity
of this band changes slightly for each adulterant oil and olive oil sig-
nificantly differs from them. The height of large peak around
2923 cm�1 is attributed to symmetrical stretching vibration of the
aliphatic CH2 group which varies between oils with higher absor-
bance values for olive oil. The availability of peak heights around
3006 cm�1 with the contribution of band around 2925 cm�1 to de-
tect olive oil adulteration was illustrated by Vlachos et al. (2006).
The band around 2853 cm�1 due to symmetrical stretching vibra-
tion of the aliphatic CH2 group changes with respect to type of oil.
There are also differences between the intensities of bands in
Fig. 1b. A remarkable variation is observed in the peak heights
around 1377 cm�1 resulting from bending vibrations of CH2 groups.
Adulterant oils exhibit some intensity in the band around 913–
914 cm�1 whereas intensity and position of band is different for ol-
ive oil showing very low or no intensity. Guillén and Cabo (1999)
employed this band to detect and quantify adulteration. Spectral re-
gions which do not contain any relevant information were excluded
in the further analysis and bands between 3120–2520 cm�1 and
1875.5–675 cm�1 were selected to be employed.
Fig. 3. Actual versus predicted percentages of (a) cottonseed oil, (b) rapeseed oil and (c)
calibration set and s: validation set).
Adulterated samples were grouped according to type of oil used
in the adulteration. PCA was performed separately for each adul-
terated group with pure olive oil sample. Pure olive oil samples in-
clude 25 olive oil samples from North and South Aegean regions.
Olive oil samples, selected from different varieties and locations,
bring variability to the pure olive oil class. Actually, it is important
to be able to decide whether adulterated samples can be differen-
tiated from pure olive oil samples by overcoming the variability
existing between the samples and pure olive oil class. Then, we
would be able to test the efficiency of the model in differentiation
of adulterated samples from olive oil belonging to different varie-
ties and geographical regions. To increase the computational effi-
ciency and also to enhance the classification studies wavelet
analysis was applied to spectral data as a compression technique.
Scores plot (not shown) revealed that 2% adulterated samples of
cottonseed, rapeseed oils and corn–sunflower binary oil mixture
are plotted too close to pure olive oil samples which hinder dis-
crimination. Thus, they are excluded in the further analysis. Then,
Coomans’ plot is constructed to more clearly visualize the discrim-
ination of adulterated samples from pure olive oil samples. Fig. 2
displays Coomans’ plots of cottonseed (5–20%), rapeseed (5–20%)
oils and corn–sunflower binary oil mixture (5–20%), versus pure ol-
ive oil samples. Coomans’ plot of cottonseed and rapeseed oil adul-
teration exhibited quite successful discrimination of olive oil
samples from adulterated samples (Fig. 2a and b). Besides, each
grouping of sample points in non-adulterated class model repre-
sents different adulteration percentages in ascending order from
corn–sunflower binary oil mixture in olive oil for calibration and validation sets (d:



Fig. 4. (a) Coomans’ plot and (b) scores plot of PLS-DA for corn–sunflower binary
mixture, cottonseed and rapeseed adulterated versus pure olive oil samples (d non-
adulterated, N adulterated olive oil samples).
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left to right for rapeseed adulteration. Also, Coomans’ plot of corn–
sunflower adulteration reveals discrimination of adulterated sam-
ples from non-adulterated oil samples. In a previous study, analysis
of different varieties of olive oils in Turkey with mid-IR spectra and
PCA resulted in tolerable discrimination between Ayvalik and
Memecik olive varieties (Gurdeniz, Ozen, & Tokatli, 2008). Conse-
quently, the model constructed here appears to be more efficient
in that it can group significantly different olive oil varieties to-
gether and discriminate adulterated olive oil samples.

There are other studies involving the use of sunflower–olive oil
and corn–olive oil binary blends to detect olive oil adulteration
with FT-IR. Tay et al. (2002) were able to discriminate olive oil sam-
ples from sunflower adulterated samples at levels between 2% and
10%. Also, results of FT-IR analysis indicated that the detection limit
for olive oil adulteration was 9% if the adulterant is only corn oil
while it was lower (6%) if the adulterant is sunflower oil (Vlachos
et al., 2006). However, each of these studies includes detection of
adulteration from binary mixtures. As far as the authors are aware,
no published work has focused on the detection of ternary olive oil
adulteration except the study of Özdemir and Öztürk (2007) whose
study focused on quantification of binary and ternary adulteration
of olive oil with sunflower and corn oil using NIR in conjunction
with genetic inverse least square. Overall, SEP ranged between
2.49% and 2.88% (vol/vol) for the binary mixtures of olive and sun-
flower oil whereas it was between 1.42 and 6.38% (vol/vol) for the
ternary mixtures of live, sunflower and corn oil.

Quantification of adulterant oil content in adulterated oil sam-
ples was performed using PLS algorithm. The same data set except
2% adulterant level was used in PLS analysis. The samples of all
the adulterated and pure olive oils were randomly divided into a
calibration and a validation set. OSC was applied to remove system-
atic variation in X (spectral data) that is not related with Y (per cent
adulteration). In addition, wavelength compression was selected to
increase the efficiency and speed. Fig. 3 displays actual versus pre-
dicted percentages of cottonseed, rapeseed oils and corn–sunflower
binary oil mixture in olive oil for calibration and validation sets. Dif-
ference between the actual and predicted adulterant oil concentra-
tion is small indicating the success of PLS model. The statistics of PLS
of calibration and validation sets are given in Table 2. High R2 value
and low SEP and SEC values demonstrate high predictive ability of
each model. Christy et al. (2004) employed NIR spectra with PLS
to detect olive oil adulteration with corn, sunflower and hazelnut
oils and error terms were determined as 1.32 and, 0.57 for sunflower
and corn oils at levels of 0–100%.

In the last part of the study, adulterated oils regardless of the
type of adulterant were grouped as one adulterant class and sub-
jected to PCA to establish if authentic olive oil samples could be
distinguished from adulterated samples. Observations were classi-
fied as adulterated including spectra of rapeseed and cottonseed
oils and corn–sunflower binary oil mixture and pure olive oil sam-
ples. It is important to determine if this model would be able dis-
criminate an olive oil sample adulterated with an unknown
adulterant from pure olive oils. To construct Coomans’ plot
(Fig. 4a) PCA was performed on adulterated and pure classes sepa-
rately. Modeling adulterated oil samples together means more
variable chemical information making them more difficult to be
placed in the same group. Thus, 2% and 5% adulterated olive oil
samples are placed so close to pure olive oil samples according
to scores plot (not shown). Therefore, the samples (2% and 5% adul-
terated) were excluded from the data set. According to Coomans’
plot, most samples of adulterated and pure samples are correctly
placed in their region. However, few samples are plotted in the re-
gion where they can not be classified as pure or adulterated. Same
classified data was also manipulated with PLS-DA and scores plot is
shown in Fig. 4b. Pure and adulterated samples are placed in right
and left hemispheres, (Fig. 4b) indicating quite successful discrim-
ination using PLS-DA. SIMCA and PLS-DA are both supervised pat-
tern recognition techniques that aim to establish classification.
However, PLS-DA classifies samples into one of the given catego-
ries, even if they do not belong to any of them. On the other hand,
SIMCA visualized with Coomans’ plot is able to discriminate non-
members (Berrueta, Alonso-Salces, & Héberger, 2007). Therefore,
visual discrimination seems to be better for PLS-DA than Coomans’
plot. However, samples that do not belong to any group can also be
displayed by Coomans’ plot (Fig. 4a). There are studies involving
the application of other analytical and chemometric methods to
discriminate olive oil from set of different adulterant oils. Avail-
ability of chromatographic profiles with SIMCA model to distin-
guish between pure olive oil samples and those adulterated with
one of the vegetable oils (sunflower, corn, peanut and coconut oils)
was illustrated (Capote et al., 2007). Also, NIR spectra manipulated
with PCA was able to classify adulterated olive oil samples with re-
spect to type of adulterant oil (Christy et al., 2004). Amongst these
and similar studies, mid-IR spectroscopy data was not employed
before to construct one model including adulterated olive oil sam-
ples using different oils. In fact one can not know the type of adul-
terant used to adulterate an olive oil sample and employment of
such an overall model can be reasonable.

In conclusion, manipulation of mid-IR spectra with chemomet-
rics leads to detection and quantification of olive oil adulteration.
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Besides, detecting potential adulterants, cottonseed and rapeseed
oils, in olive oil at a level of 5%, detection limit of binary mixture
of corn–sunflower oil in olive oil is also found out as 5%. Further-
more, mid-IR spectroscopy with chemometrics has the potential
to detect adulteration of olive oil regardless of the type of adulter-
ant oil but at a higher adulteration detection level. Quantification
studies resulted in calibration curves with R2 values around 0.9.

In the further studies, this work can be expanded by including
samples from other regions and other parts of the World and these
olive oil samples can be mixed with common adulterant oils. It is
likely that the use of Mid-IR results from an expanded vegetable
oil reference data set will result in more comprehensive models
to improve the detection and quantification of adulteration of olive
oils.
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