2,546 research outputs found

    Unsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers

    Get PDF
    The synthesis of a comprehensive theory of force production in insect flight is hindered in part by the lack of precise knowledge of unsteady forces produced by wings. Data are especially sparse in the intermediate Reynolds number regime (10<Re<1000) appropriate for the flight of small insects. This paper attempts to fill this deficit by quantifying the time-dependence of aerodynamic forces for a simple yet important motion, rapid acceleration from rest to a constant velocity at a fixed angle of attack. The study couples the measurement of lift and drag on a two-dimensional model with simultaneous flow visualization. The results of these experiments are summarized below. 1. At angles of attack below 13.5°, there was virtually no evidence of a delay in the generation of lift, in contrast to similar studies made at higher Reynolds numbers. 2. At angles of attack above 13.5°, impulsive movement resulted in the production of a leading edge vortex that stayed attached to the wing for the first 2 chord lengths of travel, resulting in an 80 % increase in lift compared to the performance measured 5 chord lengths later. It is argued that this increase is due to the process of detached vortex lift, analogous to the method of force production in delta-wing aircraft. 3. As the initial leading edge vortex is shed from the wing, a second vortex of opposite vorticity develops from the trailing edge of the wing, correlating with a decrease in lift production. This pattern of alternating leading and trailing edge vortices generates a von Karman street, which is stable for at least 7.5 chord lengths of travel. 4. Throughout the first 7.5 chords of travel the model wing exhibits a broad lift plateau at angles of attack up to 54°, which is not significantly altered by the addition of wing camber or surface projections. 5. Taken together, these results indicate how the unsteady process of vortex generation at large angles of attack might contribute to the production of aerodynamic forces in insect flight. Because the fly wing typically moves only 2–4 chord lengths each half-stroke, the complex dynamic behavior of impulsively started wing profiles is more appropriate for models of insect flight than are steady-state approximations

    The wake dynamics and flight forces of the fruit fly Drosophila melanogaster

    Get PDF
    We have used flow visualizations and instantaneous force measurements of tethered fruit flies (Drosophila melanogaster) to study the dynamics of force generation during flight. During each complete stroke cycle, the flies generate one single vortex loop consisting of vorticity shed during the downstroke and ventral flip. This gross pattern of wake structure in Drosophila is similar to those described for hovering birds and some other insects. The wake structure differed from those previously described, however, in that the vortex filaments shed during ventral stroke reversal did not fuse to complete a circular ring, but rather attached temporarily to the body to complete an inverted heart-shaped vortex loop. The attached ventral filaments of the loop subsequently slide along the length of the body and eventually fuse at the tip of the abdomen. We found no evidence for the shedding of wing-tip vorticity during the upstroke, and argue that this is due to an extreme form of the Wagner effect acting at that time. The flow visualizations predicted that maximum flight forces would be generated during the downstroke and ventral reversal, with little or no force generated during the upstroke. The instantaneous force measurements using laser-interferometry verified the periodic nature of force generation. Within each stroke cycle, there was one plateau of high force generation followed by a period of low force, which roughly correlated with the upstroke and downstroke periods. However, the fluctuations in force lagged behind their expected occurrence within the wing-stroke cycle by approximately 1 ms or one-fifth of the complete stroke cycle. This temporal discrepancy exceeds the range of expected inaccuracies and artifacts in the measurements, and we tentatively discuss the potential retarding effects within the underlying fluid mechanics

    The active control of wing rotation by Drosophila

    Get PDF
    This paper investigates the temporal control of a fast wing rotation in flies, the ventral flip, which occurs during the transition from downstroke to upstroke. Tethered flying Drosophila actively modulate the timing of these rapid supinations during yaw responses evoked by an oscillating visual stimulus. The time difference between the two wings is controlled such that the wing on the outside of a fictive turn rotates in advance of its contralateral partner. This modulation of ventral-flip timing between the two wings is strongly coupled with changes in wing-stroke amplitude. Typically, an increase in the stroke amplitude of one wing is correlated with an advance in the timing of the ventral flip of the same wing. However, flies do display a limited ability to control these two behaviors independently, as shown by flight records in which the correlation between ventral-flip timing and stroke amplitude transiently reverses. The control of ventral-flip timing may be part of an unsteady aerodynamic mechanism that enables the fly to alter the magnitude and direction of flight forces during turning maneuvers

    Humanitarianism in the Modern World: The Moral Economy of Famine Relief

    Get PDF
    This is an innovative new history of famine relief and humanitarianism. The authors apply a moral economy approach to shed new light on the forces and ideas that motivated and shaped humanitarian aid during the Great Irish Famine, the famine of 1921-1922 in Soviet Russia and the Ukraine, and the 1980s Ethiopian famine. They place these episodes within a distinctive periodisation of humanitarianism which emphasises the correlations with politico-economic regimes: the time of elitist laissez-faire liberalism in the nineteenth century as one of ad hoc humanitarianism; that of Taylorism and mass society from c.1900-1970 as one of organised humanitarianism; and the blend of individualised post-material lifestyles and neoliberal public management since 1970 as one of expressive humanitarianism. The book as a whole shifts the focus of the history of humanitarianism from the imperatives of crisis management to the pragmatic mechanisms of fundraising, relief efforts on the ground, and finance

    Asymptotic Symmetries of String Theory on AdS3 X S3 with Ramond-Ramond Fluxes

    Full text link
    String theory on AdS3 space-times with boundary conditions that allow for black hole states has global asymptotic symmetries which include an infinite dimensional conformal algebra. Using the conformal current algebra for sigma-models on PSU(1,1|2), we explicitly construct the R-symmetry and Virasoro charges in the worldsheet theory describing string theory on AdS3 X S3 with Ramond-Ramond fluxes. We also indicate how to construct the full boundary superconformal algebra. The boundary superconformal algebra plays an important role in classifying the full spectrum of string theory on AdS3 with Ramond-Ramond fluxes, and in the microscopic entropy counting in D1-D5 systems.Comment: 30 page

    Poisson-Lie T-dual sigma models on supermanifolds

    Full text link
    We investigate Poisson-Lie symmetry for T-dual sigma models on supermanifolds in general and on Lie supergroups in particular. We show that the integrability condition on this super Poisson-Lie symmetry is equivalent to the super Jacobi identities of the Lie super-bialgebras. As examples we consider models related to four dimensional Lie super-bialgebras ((2A1,1+2A)1,D10p=1/2)((2A1,1 + 2A)^1, D10_p=1/2) and ((2A1,1+2A)1,I)((2A1,1 + 2A)^1, I). Then generally it is shown that for Abelian case (g, I) the super Poisson-Lie T-duality transforms the role of fermionic (bosonic) fields in the model to bosonic (fermionic) fields on the dual model and vice versa.Comment: 13 pages, Revised and accepted for publication in JHE
    corecore