650 research outputs found

    Improvement of the efficient referencing and sample positioning system for micro focused synchrotron X-ray techniques

    Get PDF
    An efficient referencing and sample positioning system is a basic tool for a micro focus beamline at a synchrotron. The seven years ago introduced command line based system was upgraded at SUL-X beamline at ANKA [1]. A new combination of current server client techniques offers direct control and facilitates unexperienced users the handling of this frequently used tool

    Structural, vibrational and thermal properties of densified silicates : insights from Molecular Dynamics

    Full text link
    Structural, vibrational and thermal properties of densified sodium silicate (NS2) are investigated with classical molecular dynamics simulations of the glass and the liquid state. A systematic investigation of the glass structure with respect to density was performed. We observe a repolymerization of the network manifested by a transition from a tetrahedral to an octahedral silicon environment, the decrease of the amount of non-bridging oxygen atoms and the appearance of three-fold coordinated oxygen atoms (triclusters). Anomalous changes in the medium range order are observed, the first sharp diffraction peak showing a minimum of its full-width at half maximum according to density. The previously reported vibrational trends in densified glasses are observed, such as the shift of the Boson peak intensity to higher frequencies and the decrease of its intensity. Finally, we show that the thermal behavior of the liquid can be reproduced by the Birch-Murnaghan equation of states, thus allowing us to compute the isothermal compressibility

    Postshock Thermally Induced Transformations in Experimentally Shocked Magnetite

    Get PDF
    We studied the effect of 973 K heating in argon atmosphere on the magnetic and structural properties of a magnetite‐bearing ore, which was previously exposed to laboratory shock waves between 5 and 30 GPa. For this purpose magnetic properties were studied using temperature‐dependent magnetic susceptibility, magnetic hysteresis and low‐temperature saturation isothermal remanent magnetization. Structural properties of magnetite were analyzed using X‐ray diffraction, high‐resolution scanning electron microscopy and synchrotron‐assisted X‐ray absorption spectroscopy. The shock‐induced changes include magnetic domain size reduction due to brittle and ductile deformation features and an increase in Verwey transition temperature due to lattice distortion. After heating, the crystal lattice is relaxed and apparent crystallite size is increased suggesting a recovery of lattice defects documented by a mosaic recrystallization texture. The structural changes correlate with modifications in magnetic domain state recorded by temperature‐dependent magnetic susceptibility, hysteresis properties and low‐temperature saturation isothermal remanent magnetization. These alterations in both, magnetic and structural properties of magnetite can be used to assess impact‐related magnetic anomalies in impact structures with a high temperature overprint
    • 

    corecore