208 research outputs found

    Accurate Adiabatic Connection Curve Beyond the Physical Interaction Strength

    Get PDF
    The adiabatic connection curve of density functional theory (DFT) is accurately calculated beyond the physical interaction strength for Hooke's atom, two interacting electrons in a harmonic well potential. Extrapolation of the accurate curve to the infinite coupling limit agrees well with the strictly correlated electron (SCE) hypothesis but the approach to this limit is more complex. The interaction strength interpolation is shown to be a good, but not perfect, fit to the adiabatic curve. Arguments about the locality of functionals and convexity of the adiabatic connection curve are examined in this regime.Comment: 7 pages, 5 figure

    Exchange and Correlation Kernels at the Resonance Frequency -- Implications for Excitation Energies in Density-Functional Theory

    Full text link
    Specific matrix elements of exchange and correlation kernels in time-dependent density-functional theory are computed. The knowledge of these matrix elements not only constraints approximate time-dependent functionals, but also allows to link different practical approaches to excited states, either based on density-functional theory, or on many-body perturbation theory, despite the approximations that have been performed to derive them.Comment: Submitted to Phys. Rev. Lett. (February 4, 1999). Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Many-body diagrammatic expansion in a Kohn-Sham basis: implications for Time-Dependent Density Functional Theory of excited states

    Full text link
    We formulate diagrammatic rules for many-body perturbation theory which uses Kohn-Sham (KS) Green's functions as basic propagators. The diagram technique allows to study the properties of the dynamic nonlocal exchange-correlation (xc) kernel fxcf_{xc}. We show that the spatial non-locality of fxcf_{xc} is strongly frequency-dependent. In particular, in extended systems the non-locality range diverges at the excitation energies. This divergency is related to the discontinuity of the xc potential.Comment: 4 RevTeX pages including 3 eps figures, submitted to Phys. Rev. Lett; revised version with new reference

    Density-to-potential map in time-independent excited-state density-functional theory

    Full text link
    In light of the recent work by Sahni et al., Harbola, and Gaudoin and Burke, the question of mapping from an excited-state density of a many-electron interacting system to the potential of the related non-interacting system is analyzed. To do so, we investigate the Levy-Nagy criterion quantitatively for several excited-states. Our work indicates that Levy-Nagy criterion may fix the density to potential map uniquely

    Exact Kohn-Sham exchange kernel for insulators and its long-wavelength behavior

    Full text link
    We present an exact expression for the frequency-dependent Kohn-Sham exact-exchange (EXX) kernel for periodic insulators, which can be employed for the calculation of electronic response properties within time-dependent (TD) density-functional theory. It is shown that the EXX kernel has a long-wavelength divergence behavior of the exact full exchange-correlation kernel and thus rectifies one serious shortcoming of the adiabatic local-density approximation and generalized-gradient approximations kernels. A comparison between the TDEXX and the GW-approximation-Bethe-Salpeter-equation approach is also made.Comment: two column format 6 pages + 1 figure, to be publisehd in Physical Review

    Exact-Exchange Kohn-Sham formalism applied to one-dimensional periodic electronic systems

    Full text link
    The Exact-Exchange (EXX) Kohn-Sham formalism, which treats exchange interactions exactly within density-functional theory, is applied to one-dimensional periodic systems. The underlying implementation does not rely on specific symmetries of the considered system and can be applied to any kind of periodic structure in one to three dimensions. As a test system, transtrans-polyacetylene, both in form of an isolated chain and in the bulk geometry has been investigated. Within the EXX scheme, bandstructures and independent particle response functions are calculated and compared to experimental data as well as to data calculated by several other methods. Compared to results from the local-density approximation, the EXX method leads to an increased value for the band gap, in line with similar observations for three-dimensional semiconductors. An inclusion of correlation potentials within the local density approximation or generalized gradient approximations leads to only negligible effects in the bandstructure. The EXX band gaps are in good agreement with experimental data for bulk transtrans-polyacetylene. Packing effects of the chains in bulk transtrans-polyacetylene are found to lower the band gap by about 0.5 eV

    Exact-exchange density-functional theory for quasi-two-dimensional electron gases

    Full text link
    A simple exact-exchange density-functional method for a quasi-two-dimensional electron gas with variable density is presented. An analytical expression for the exact-exchange potential with only one occupied subband is provided, without approximations. When more subbands are occupied the exact-exchange potential is obtained numerically. The theory shows that, in contradiction with LDA, the exact-exchange potential exhibits discontinuities and the system suffers a zero-temperature first-order transition each time a subband is occupied. Results suggesting that the translational symmetry might be spontaneously broken at zero temperature are presented. An extension of the theory to finite temperatures allows to describe a drop in the intersubband spacing in good quantitative agreement with recent experiments.Comment: 14 pages, 3 figure

    Analysis of OPM potentials for multiplet states of 3d transition metal atoms

    Full text link
    We apply the optimized effective potential method (OPM) to the multiplet energies of the 3dn^n transition metal atoms, where the orbital dependence of the energy functional with respect to orbital wave function is the single-configuration HF form. We find that the calculated OPM exchange potential can be represented by the following two forms. Firstly, the difference between OPM exchange potentials of the multiplet states can be approximated by the linear combination of the potentials derived from the Slater integrals F2(3d,3d)F^2({\rm 3d,3d}) and F4(3d,3d)F^4({\rm 3d,3d}) for the average energy of the configuration. Secondly, the OPM exchange potential can be expressed as the linear combination of the OPM exchange potentials of the single determinants.Comment: 15 pages, 6 figures, to be published in J. Phys.

    Exact-exchange density-functional calculations for noble-gas solids

    Full text link
    The electronic structure of noble-gas solids is calculated within density functional theory's exact-exchange method (EXX) and compared with the results from the local-density approximation (LDA). It is shown that the EXX method does not reproduce the fundamental energy gaps as well as has been reported for semiconductors. However, the EXX-Kohn-Sham energy gaps for these materials reproduce about 80 % of the experimental optical gaps. The structural properties of noble-gas solids are described by the EXX method as poorly as by the LDA one. This is due to missing Van der Waals interactions in both, LDA and EXX functionals.Comment: 4 Fig
    • 

    corecore