109 research outputs found

    Many-body diagrammatic expansion in a Kohn-Sham basis: implications for Time-Dependent Density Functional Theory of excited states

    Full text link
    We formulate diagrammatic rules for many-body perturbation theory which uses Kohn-Sham (KS) Green's functions as basic propagators. The diagram technique allows to study the properties of the dynamic nonlocal exchange-correlation (xc) kernel fxcf_{xc}. We show that the spatial non-locality of fxcf_{xc} is strongly frequency-dependent. In particular, in extended systems the non-locality range diverges at the excitation energies. This divergency is related to the discontinuity of the xc potential.Comment: 4 RevTeX pages including 3 eps figures, submitted to Phys. Rev. Lett; revised version with new reference

    Analysis of OPM potentials for multiplet states of 3d transition metal atoms

    Full text link
    We apply the optimized effective potential method (OPM) to the multiplet energies of the 3dn^n transition metal atoms, where the orbital dependence of the energy functional with respect to orbital wave function is the single-configuration HF form. We find that the calculated OPM exchange potential can be represented by the following two forms. Firstly, the difference between OPM exchange potentials of the multiplet states can be approximated by the linear combination of the potentials derived from the Slater integrals F2(3d,3d)F^2({\rm 3d,3d}) and F4(3d,3d)F^4({\rm 3d,3d}) for the average energy of the configuration. Secondly, the OPM exchange potential can be expressed as the linear combination of the OPM exchange potentials of the single determinants.Comment: 15 pages, 6 figures, to be published in J. Phys.

    Generation of Complex Azabicycles and Carbobicycles from Two Simple Compounds in a Single Operation through a Metal‐Free Six‐Step Domino Reaction

    Full text link
    Aza‐ and carbobicyclic compounds possess favorable pharmaceutical properties, but they are difficult to access. Herein, we demonstrate an unprecedented organocatalytic two component six‐step chemodivergent domino reaction, which provides a straightforward, sustainable and atom economical route to difficult‐to‐access complex bicyclic architectures: azabicycles and carbobicycles, whose ratios can be controlled by the applied electrophiles and catalysts. Detailed NMR and X‐ray studies on the structures and relative stereochemistry of selected compounds are presented. Mechanistic investigations of the chemoselective branching step have been carried out with DFT methods in conjunction with semiempirical van der Waals interactions. This new domino reaction opens up a new vista of generating, in a single operation, new bioactive compounds with strong antiviral properties (EC50 up to 0.071 Όm for human cytomegalovirus (HCMV)) outperforming clinically used ganciclovir (EC50 2.6 Όm).Six steps in one go! An unprecedented two component six‐step domino reaction, providing a straightforward and atom economical route to bioactive azabicycles and carbobicycles is presented. DFT calculations accounting for dispersion interactions revealed that chemoselectivity might result from small differences in transition state and reaction energies of the branching step. This reaction opens up a new vista of generating, in a single operation, new antivirals outperforming clinically used drugs.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137557/1/chem201504798.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137557/2/chem201504798_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137557/3/chem201504798-sup-0001-misc_information.pd

    Parameterized optimized effective potential for atoms

    Full text link
    The optimized effective potential equations for atoms have been solved by parameterizing the potential. The expansion is tailored to fulfill the known asymptotic behavior of the effective potential at both short and long distances. Both single configuration and multi configuration trial wave functions are implemented. Applications to several atomic systems are presented improving previous works. The results here obtained are very close to those calculated in either the Hartree-Fock and the multi configurational Hartree-Fock framework.Comment: 8 pages, 3 figure

    Noncovalent Functionalization and Passivation of Black Phosphorus with Optimized Perylene Diimides for Hybrid Field Effect Transistors

    Get PDF
    Amongst the different existing methods to passivate black phosphorus (BP) from environmental degradation, the noncovalent functionalization with perylene diimides (PDI) has been postulated as one of the most promising routes because it allows preserving its electronic properties. This work describes the noncovalent functionalization and outstanding environmental protection of BP with tailor made PDI having peri-amide aromatic side chains, which include phenyl and naphthyl groups, exhibiting a significantly increased molecule-BP interaction. These results are rationalized by density functional theory (DFT) calculations showing that the adsorption energies are mainly governed by van der Waals (vdW) interactions and increase concomitantly with the aromatic character of the side chains. The resulting hybrids are thoroughly characterized showing enhanced ambient and thermal stabilities. Last but not least, hybrid organic-inorganic BP-PDI field effect transistors (FETs) are studied for the first time showing the usefulness of PDI derivatives as efficient passivation layers while obtaining improved values of electron mobilities. These results pave the way for the use of optimized PDIs by molecular engineering to preserve the electronic properties of BP FETs, using straightforward wet chemical approaches

    Density-functional Study of Small Molecules within the Krieger-Li-Iafrate Approximation

    Get PDF
    We report density-functional studies of several small molecules (H2,N2,CO,H2OH_{2}, N_{2}, CO, H_{2}O, and CH4CH_{4}) within the Krieger-Li-Iafrate (KLI) approximation to the exact Kohn-Sham local exchange potential, using a three-dimensional real-space finite-difference pseudopotential method. It is found that exchange-only KLI leads to markedly improved eigenvalue spectra compared to those obtained within the standard local-density approximation (LDA), the generalized gradient approximation (GGA), and the Hartree-Fock (HF) method. For structural properties, exchange-only KLI results are close to the corresponding HF values. We find that the addition of LDA or GGA correlation energy functionals to the KLI exact exchange energy functional does not lead to systematic improvements.Comment: 16 pages including 1 fugure, to be published in Phys. Rev. A Nov. 1 '9

    Exchange-correlation energy densities for two-dimensional systems from quantum dot ground-states

    Full text link
    In this paper we present a new approach how to extract polarization-dependent exchange-correlation energy densities for two-dimensional systems from reference densities and energies of quantum dots provided by exact diagonalization. Compared with results from literature we find systematic corrections for all polarizations in the regime of high densities.Comment: 7 figures. submitted to Phys. Rev.
    • 

    corecore