145 research outputs found

    Analysis of glacial earthquakes

    Get PDF
    In 2003, Ekström et al. reported on the detection of a new class of earthquakes that occur in glaciated regions, with the vast majority being in Greenland. The events have a characteristic radiation pattern and lack the high-frequency content typical of tectonic earthquakes. It was proposed that the events correspond to large and sudden sliding motion of glaciers. Here we present an analysis of all 184 such events detected in Greenland between 1993 and 2005. Fitting the teleseismic long-period surface waves to a landslide model of the source, we obtain improved locations, timing, force amplitudes, and force directions. After relocation, the events cluster into seven regions, all of which correspond to regions of very high ice flow and most of which are named outlet glaciers. These regions are Daugaard Jensen Glacier, Kangerdlugssuaq Glacier, Helheim Glacier, the southeast Greenland glaciers, the northwest Greenland glaciers, Rinks Isbrae, and Jakobshavn Isbrae. Event amplitudes range from 0.1 to 2.0 × 10^(14) kg m. Force directions are consistent with sliding in the direction of glacial flow over a period of about 50 s. Each region has a different temporal distribution of events. All glaciers are more productive in the summer, but have their peak activity in different months. Over the study period, Kangerdlugssuaq has had a constant number of events each year, whereas Jakobshavn had most events in 1998–1999, and the number of events in Helheim and the northwest Greenland glaciers has increased substantially between 1993 and 2005. The size distribution of events in Kangerdlugssuaq is peaked above the detection threshold, suggesting that glacial earthquakes have a characteristic size

    Simple scaling of catastrophic landslide dynamics

    Get PDF
    Catastrophic landslides involve the acceleration and deceleration of millions of tons of rock and debris in response to the forces of gravity and dissipation. Their unpredictability and frequent location in remote areas have made observations of their dynamics rare. Through real-time detection and inverse modeling of teleseismic data, we show that landslide dynamics are primarily determined by the length scale of the source mass. When combined with geometric constraints from satellite imagery, the seismically determined landslide force histories yield estimates of landslide duration, momenta, potential energy loss, mass, and runout trajectory. Measurements of these dynamical properties for 29 teleseismogenic landslides are consistent with a simple acceleration model in which height drop and rupture depth scale with the length of the failing slope

    Quantify and account for field reference errors in forest remote sensing studies

    Get PDF
    Field inventoried data are often used as references (ground truth) in forest remote sensing studies. However, the reference values are affected by various kinds of errors, which tend to make the reported accuracies of the remote sensing-based predictions worse than they are. The more accurate the remote sensing techniques are becoming, the more pronounced this problem will be. This paper addresses the impact of uncertainties in field reference data due to measurement errors, model errors, and position errors when evaluating the accuracy of biomass predictions from airborne laser scanning at plot level. We present novel theoretical analysis methods that take the interactions of the error sources into account. Further, an error characterization model (ECM) is used to describe the error structure of the remote sensing-based predictions, and we show how the parameters of the ECM can be adjusted when field references contain errors. We also show how root mean square error (RMSE) estimates can be adjusted. Based on data from Scandinavian forests, we conclude that the field reference errors have an impact on the remote sensing-based predictions. By accounting for these errors the RMSE of the remote sensing-based predictions was reduced by 6-18%. The most influential sources of error in the field references were found to be the residual errors of the allometric biomass model and the field plot position errors. Together, these two sources accounted for 97% of the variance while measurement errors and biomass model parameter uncertainties were negligible in our study

    The European Upper Mantle as Seen by Surface Waves

    Get PDF
    We derive a global, three-dimensional tomographic model of horizontally and vertically polarized shear velocities in the upper mantle. The model is based on a recently updated global database of Love- and Rayleigh-wave fundamental-mode phase-anomaly observations, with a good global coverage and a particularly dense coverage over Europe and the Mediterranean basin (broadband stations from the Swiss and German seismic networks). The model parameterization is accordingly finer within this region than over the rest of the globe. The large-scale, global structure of our model is very well correlated with that of earlier shear-velocity tomography models, based both on body- and surface-wave observations. At the regional scale, within the region of interest, correlation is complicated by the different resolution limits associated to different databases (surface waves, compressional waves, shear waves), and, accordingly, to different models; while a certain agreement appears to exist for what concerns the grand tectonic features in the area, heterogeneities of smaller scale are less robustly determined. Our new model is only one step towards the identification of a consensus model of European/Mediterranean upper-mantle structure: on the basis of the findings discussed here, we expect that important improvements will soon result from the combination, in new tomographic inversions, of fundamental-mode phase-anomaly data like ours with observations of surface-wave overtones, of body-wave travel times, of ambient "noise”, and by accounting for an a-priori model of crustal structure more highly resolved than the one employed her

    Cavity-free vacuum-Rabi splitting in circuit quantum acoustodynamics

    Full text link
    Artificial atoms coupled to surface acoustic waves (SAWs) have played a crucial role in the recent development of circuit quantum acoustodynamics (cQAD). In this paper, we have investigated the interaction of an artificial atom and SAWs beyond the weak coupling regime, focusing on the role of the interdigital transducer (IDT) that enables the coupling. We find a parameter regime in which the IDT acts as a cavity for the atom, rather than an antenna. In other words, the atom forms its own cavity. Similar to an atom coupled to an explicit cavity, this regime is characterized by vacuum-Rabi splitting, as the atom hybridizes with the phononic vacuum inside the IDT. This hybridization is possible because of the interdigitated coupling, which has a large spatial extension, and the slow propagation speed of SAWs. We work out a criterion for entering this regime from a model based on standard circuit-quantization techniques, taking only material parameters as inputs. Most notably, we find this regime hard to avoid for an atom on top of a strong piezoelectric material, such as LiNbO3_3. The SAW-coupled atom on top of LiNbO3_3 can thus be regarded as an atom-cavity-bath system. On weaker piezoelectric materials, the number of IDT electrodes need to be large in order to reach this regime.Comment: 11 pages, 5 figure

    Propagating phonons coupled to an artificial atom

    Full text link
    Quantum information can be stored in micromechanical resonators, encoded as quanta of vibration known as phonons. The vibrational motion is then restricted to the stationary eigenmodes of the resonator, which thus serves as local storage for phonons. In contrast, we couple propagating phonons to an artificial atom in the quantum regime, and reproduce findings from quantum optics with sound taking over the role of light. Our results highlight the similarities between phonons and photons, but also point to new opportunities arising from the unique features of quantum mechanical sound. The low propagation speed of phonons should enable new dynamic schemes for processing quantum information, and the short wavelength allows regimes of atomic physics to be explored which cannot be reached in photonic systems.Comment: 30 pages, 6 figures, 1 tabl

    Global observation of vertical-CLVD earthquakes at active volcanoes

    Get PDF
    Some of the largest and most anomalous volcanic earthquakes have non-double-couple focal mechanisms. Here, we investigate the link between volcanic unrest and the occurrence of non-double-couple earthquakes with dominant vertical tension or pressure axes, known as vertical compensated-linear-vector-dipole (vertical-CLVD) earthquakes. We determine focal mechanisms for 313 target earthquakes from the standard and surface wave catalogs of the Global Centroid Moment Tensor Project and identify 86 shallow 4.3 ≤ MW ≤ 5.8 vertical-CLVD earthquakes located near volcanoes that have erupted in the last ~100 years. The majority of vertical-CLVD earthquakes occur in subduction zones in association with basaltic-to-andesitic stratovolcanoes or submarine volcanoes, although vertical-CLVD earthquakes are also located in continental rifts and in regions of hot spot volcanism. Vertical-CLVD earthquakes are associated with many types of confirmed or suspected eruptive activity at nearby volcanoes, including volcanic earthquake swarms as well as effusive and explosive eruptions and caldera collapse. Approximately 70% of all vertical-CLVD earthquakes studied occur during episodes of documented volcanic unrest at a nearby volcano. Given that volcanic unrest is underreported, most shallow vertical-CLVD earthquakes near active volcanoes are likely related to magma migration or eruption processes. Vertical-CLVD earthquakes with dominant vertical pressure axes generally occur after volcanic eruptions, whereas vertical-CLVD earthquakes with dominant vertical tension axes generally occur before the start of volcanic unrest. The occurrence of these events may be useful for identifying volcanoes that have recently erupted and those that are likely to erupt in the future
    • …
    corecore