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Abstract We derive a global, three-dimensional tomographic model of horizontally and

vertically polarized shear velocities in the upper mantle. The model is based on a recently

updated global database of Love- and Rayleigh-wave fundamental-mode phase-anomaly

observations, with a good global coverage and a particularly dense coverage over Europe

and the Mediterranean basin (broadband stations from the Swiss and German seismic

networks). The model parameterization is accordingly finer within this region than over the

rest of the globe. The large-scale, global structure of our model is very well correlated with

that of earlier shear-velocity tomography models, based both on body- and surface-wave

observations. At the regional scale, within the region of interest, correlation is complicated

by the different resolution limits associated to different databases (surface waves, com-

pressional waves, shear waves), and, accordingly, to different models; while a certain

agreement appears to exist for what concerns the grand tectonic features in the area,

heterogeneities of smaller scale are less robustly determined. Our new model is only one

step towards the identification of a consensus model of European/Mediterranean upper-

mantle structure: on the basis of the findings discussed here, we expect that important

improvements will soon result from the combination, in new tomographic inversions, of

fundamental-mode phase-anomaly data like ours with observations of surface-wave

overtones, of body-wave travel times, of ambient ‘‘noise’’, and by accounting for an

a-priori model of crustal structure more highly resolved than the one employed here.
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1 Introduction

An effort is underway to identify a consensus model of seismic velocities under the

Mediterranean Basin. From a strictly seismological point of view, advancing our knowl-

edge of seismic structure in the area is an important step in the development of shake-

maps, and in the accurate calculation of earthquake location, magnitude and geometry. The

latter endeavour is also relevant in the context of the comprehensive nuclear test ban treaty,

with the goal of improving the accuracy of algorithms used to determine the hypocenter

and magnitude of seismic events. In the more general framework of Earth sciences,

tomography can be seen as a tool to help explain tectonic displacements and lithospheric

deformations, and ultimately understand the mechanisms that drive plate tectonics.

Southern Europe, site of the Upper-Cretaceous closure of the Tethys ocean, of current

ocean-continent collision at the Calabrian and Aegean arcs, and continent-continent col-

lision elsewhere, is an especially interesting setting for analysing the works of tectonic

forces. While plate motions in the region have been accurately reconstructed, the under-

lying dynamics are still debated (e.g., Faccenna et al. 2003; Capitanio and Goes 2006).

The present study is preceded by a number of competing tomographic models (Piro-

mallo and Morelli 2003; Boschi et al. 2004; Marone et al. 2004; Pilidou et al. 2005;

Kustowski et al. 2008a; Peter et al. 2008; Schmid et al. 2008; Weidle and Maupin 2008;

Schivardi and Morelli 2009) and images (Bijwaard et al. 1998; Wortel and Spakman

2000), generally sharing the same macroscopic features: high velocities down to J300 km

under the East European Craton, and to even larger depths along a narrower band roughly

corresponding to the Aegean Arc; low velocities in the top *100 km of the mantle under

Anatolia and the Western Mediterranean, and, to a lesser extent, the Balkans and Germany.

On the other hand, as we shall discuss in detail below (Sect. 10), the small-scale signature

of models can differ significantly, to the point that their short-wavelength components are

occasionally anti-correlated to one another. To some extent, differences in tomographic

maps are a consequence of the properties of the sesimic observations used to derive them:

it is more difficult to map small-scale features on the basis of low-frequency seismic

signals. As a result, current surface-wave-based models can at best provide a low-pass-

filtered version of true seismic structure. Limitations in the coverage and quality of the data

and in the theoretical formulation underlying tomographic inversions (ray-theory versus

finite-frequency theory: Peter et al. 2008) and the arbitrarity inherent to the required

tomographic regularization (e.g., Boschi and Dziewoński 1999) probably play an even

more important role.

While recognizing that a consensus model of upper mantle structure should explain (and

be derived from) body- as well as surface-wave observations, we focus here only on the

latter, building on the work of Fry (2007) and Fry et al. (2008) to improve the relatively

low-resolution model of Boschi et al. (2004). The latter authors could only count on the

global Love- and Rayleigh-wave database of Ekström et al. (1997) and Boschi and

Ekström (2002), with coverage over Europe not better than over other continental areas;

Fry et al. (2008) conducted an important update of the database, via the analysis of seismic

records from the Swiss and German permanent networks, as well as the temporary Midsea
(van der Lee et al. 2001) and Tomo-CH (Fry 2007) deployments, as described in Sect. 2

below. This allowed, in turn, a commensurate refinement of model parameterization

(Sect. 4), and we discuss in Sect. 5 the achieved effective resolution. The resulting new

model of horizontally and vertically polarized shear velocities in the European upper

mantle shares most of the features already mapped by Boschi et al. (2004), with some
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important differences. Relatively high-spatial-frequency anomalies particular to the new

model are corroborated by independent seismic and/or geodynamic studies.

2 New Observations of Love- and Rayleigh-Wave Phase Velocity

Fry et al. (2008) measured phase-velocity dispersion of fundamental-mode Love and

Rayleigh waves, at periods between 35 and 150 s, on seismic recordings made in the years

1999–2006 at stations in the Midsea (van der Lee et al. 2001), SDSNet (Baer et al. 2000),

TomoCH (Fry et al. 2008), and GRSN (Henger et al. 2002) networks (Fig. 1). Only

recordings associated with events of magnitude Mw [ 5.5 and epicentral distances bete-

ween 25� and 150� were considered, with the exception of a small number (\1% of the

total database) of regional events with epicentral distance \25�.

Dispersion curves were derived through the algorithm of Ekström et al. (1997). Because

the frequency-range over which a robust dispersion measurement is found varies

depending on event and station, a data set of slightly different size corresponds to each type

and period of surface wave. For Love-wave fundamental modes, the number of new

observations grows, with growing period, from *4000 (35 s) to *6000 (150 s); for

Rayleigh waves at the same periods it varies between *9000 and *12,000.

We combine the new database with the one originally available to Boschi et al. (2004),

including *25,000 to *30,000 Love-, and *50,000 to *65,000 Rayleigh-wave funda-

mental-mode phase-anomaly measurements between 35 and 150 s periods, and a smaller

number of analogous, global measurements at longer periods (between *2000 for Love

waves at 300 s, and *9000 for Rayleigh waves at 200 s). In an attempt to maximize the

resolving power of the data, and in view of the larger available computer RAM and storage

Fig. 1 We measured teleseismic surface-wave dispersion at stations from the Midsea (green triangles),
SDSNet/TomoCH (red) and GRSN (blue) networks. Those measurements were combined with the
dispersion database of Ekström et al. (1997) and Boschi and Ekström (2002) (yellow)
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space, we do not compute ‘‘summary rays’’ as in Boschi and Ekström (2002) and Boschi

et al. (2004). In a set of preliminary tests on the original database of Boschi and Ekström

(2002), we have verified that their summary-ray based results are reproduced almost

exactly, if their procedure is repeated on the original, non-summary data.

Globally, the new database is *35% larger with respect to the one available to Boschi

et al. (2004). Over most of continental Europe, the increase in data coverage ranges

between 50% and 100%, as illustrated in Fig. 3.1 of Fry (2007).

Combining measurements of different surface-wave modes, one notices that phase

anomalies corresponding to higher frequency modes are systematically smaller than those

associated with lower frequency ones. In our joint inversions of modes of different fre-

quency, this effect might result in a systematic overfitting of higher frequency modes, with

respect to the lower frequency ones. As explained in Sect. 4.1 of Boschi and Ekström

(2002), we therefore assign to each phase-anomaly observation a weight, inversely pro-

portional to the root-mean-square of all observations of the corresponding mode.

3 Outline of the Theory

We provide in this section a synopsis of our theoretical formulation, summarizing the

treatment of Boschi and Ekström (2002) and Boschi et al. (2004).

3.1 From Phase-Delay Data to Two-Dimensional Maps of Phase Slowness

In the assumption that Earth’s structure be smooth, at a frequency x the phase delay d/(x)

associated with the corresponding Love- or Rayleigh-wave mode is linearly related to

heterogeneities in the mode slowness dp (h, u; x) through Fermat’s principle

d/ðxÞ ¼ x
Z

ray path

dpðhðsÞ;uðsÞ; xÞ ds ð1Þ

(e.g., Ekström et al. 1997), with h and u colatitude and longitude, respectively, and

h = h(s), u = u(s) the ray path equations. Equation 1 holds for each datum d/m

(m = 1,…, M) in the database, provided that the integration at its right hand side is

conducted over the appropriate ray path, which we shall denote ray pathm.

Let us now write the unknown heterogeneity dp as the linear combination of a set of I
horizontal basis functions Si(h, u) (i = 1,…, I),

dpðh;u; xÞ ¼
XI

i¼1

xiSiðh;uÞ; ð2Þ

with xi a set of I unknown coefficients. After substituting dp in (1) with its expression (2),

d/mðxÞ ¼ x
XI

i¼1

xi

Z

ray pathm

SiðhðsÞ;uðsÞÞ ds; ð3Þ

and computing the integrals at the right-hand side of (3),
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Gmi ¼ x
Z

ray pathm

SiðhðsÞ;uðsÞÞ ds; ð4Þ

a simple linear system is found, which can be written in tensor notation

d/ðxÞ ¼ G � x; ð5Þ

and must be solved to determine the coefficients x and a corresponding map of phase-

slowness heterogeneity dp.

To reduce the effects of noise in the data, source location errors etc., seismic tomog-

raphers usually select M � I. Because of the nonuniformity in seismic data coverage, the

resulting inverse problem (5) is not overdetermined, but mixed-determined, and can only

be solved in least-squares sense.

3.2 From Phase-Delay Data to Three-Dimensional Maps of Upper Mantle Structure

Because we are interested in three-dimensional shear-velocity structure, we follow a dif-

ferent approach, making use of the equality

dpðh;u; xÞ ¼
Za

0

XL

l¼1

Klðr; h;u; xÞ dvlðr; h;uÞ dr ð6Þ

(Boschi and Ekström 2002), based on local normal-mode theory (Tromp and Dahlen 1992),

with a denoting the Earth’s radius, dvl the heterogeneities in a set of L parameters

describing the elastic properties of the Earth, and Kl the corresponding sensitivity func-

tions. After substituting (6) into (1),

d/mðxÞ ¼ x
XL

l¼1

Za

0

Z

ray pathm

KlðrðsÞ; hðsÞ;uðsÞ; xÞ dvlðrðsÞ; hðsÞ;uðsÞÞ drds; ð7Þ

dvl can be written, in analogy with Eq. 2, as a linear combination of N = I 9 J basis

functions, each defined as the product of a horizontal basis function Si with a vertical one

Rj = Rj(r),

dvlðr; h;uÞ ¼
XI

i¼1

XJ

j¼1

xl
ijSiðh;uÞRjðrÞ; ð8Þ

and substituting (8) into (7),

d/mðxÞ ¼ x
XL

l¼1

XI

i¼1

XJ

j¼1

xl
ij

Za

0

Z

ray pathm

KlðrðsÞ; hðsÞ;uðsÞ; xÞ SiðhðsÞ;uðsÞÞRjðrðsÞÞ drds:

ð9Þ

(Boschi and Ekström 2002).

Let us establish a one-to-one correspondence between the index couples ij and a single

index n = 1,…, N. We can then define
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Al
mn ¼ x

Za

0

Z

ray pathm

KlðrðsÞ; hðsÞ;uðsÞ; xÞ SiðhðsÞ;uðsÞÞRjðrðsÞÞ drds; ð10Þ

and Eq. 9 collapses to

d/mðxÞ ¼
XL

l¼1

Al
mnxl

ij: ð11Þ

Introducing a matrix A and vector x comprised, respectively, of all matrices

A1;A2; hellip; ;AL, and of all vectors x1; x2; . . .; xL combined in a consecutive manner, the

usual tensorial form is found for Eq. 11,

d/ðxÞ ¼ A � x: ð12Þ
Our inversions, discussed below, consist of solving (12) in damped least-squares sense

(for the reasons outlined at the end of Sect. 1), i.e.

x ¼ AT � Aþ D
� ��1�AT � d/; ð13Þ

where the superscript T denotes matrix transposition, the superscript -1 matrix inversion,

and D the regularization or damping matrix (Boschi et al. 2004).

In analogy with Boschi and Ekström (2002) we select L = 2, the only free parameters

of our inversions being horizontally and vertically polarized shear velocities.

4 Model Parameterization

We apply the algorithm of Boschi et al. (2004) to translate phase anomaly data into a three-

dimensional map of horizontally and vertically polarized, shear and compressional

velocities. Following Boschi and Ekström (2002), we assume heterogeneities in horizon-

tally and vertically polarized compressional velocities to coincide with heterogeneities in

horizontally and vertically polarized shear velocities, respectively.

In agreement with the multiple-resolution philosophy of, e.g., Bijwaard et al. (1998), we

parameterize the whole globe, with a grid of local basis functions that becomes finer in the

region that is best covered by the data. This way, smearing of global heterogeneity into the

localized region to be mapped is minimized, while the number of free parameters remains

relatively small, limiting computational costs. Unlike Bijwaard et al. (1998), we do not

design an ‘‘adaptive’’ grid, with locally variable density proportional to local data cover-

age, but more simply choose one region of interest, where we replace the coarse global grid

with a much finer one. More specifically, we apply the algorithm of Wang and Dahlen

(1995) to define a cubic B-spline basis on a triangular grid of knots with approximately

constant inter-knot spacing. We first conduct a 6-fold tessellation (Wang and Dahlen

1995), to establish the global parameterization knots. Splines associated with knots of

longitude between 10� W and 30� E, and latitude between 30� N and 60� N, are excluded

from the final parameterization. A 30-fold tessellation defines the more closely spaced

knots to be used locally. Of the splines resulting from this finer tessellation, only the ones

whose knots fall within the region defined above are included in the final parameterization,

illustrated in Fig. 2b. The high-resolution area is approximately centered on Switzerland,

where station density is highest. Comparison of Fig. 2a with b illustrates the refinement of
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parameterization with respect to the work of Boschi et al. (2004): from 66 to 183 splines in

the high-resolution region. The rest of the globe is described by 355 splines, so that our

horizontal parameterization involves 538 splines total. The vertical parameterization is the

same as that of Boschi et al. (2004), illustrated in their Fig. 1a. It consists of 9 cubic splines

centered at 60 km-spaced knots between 0 and 300 km depth, and 150 km-space knots

between 300 and 450 km. As horizontally and vertically polarized shear velocities are

parameterized independently, each of our models consists of 9684 coefficients.

5 Tomography Resolution

The resolution of seismic tomography is limited by a number of factors, including data

coverage, data quality, and the accuracy of the theoretical formulation of the inverse

problem, which generally involves some important approximations.

5.1 Data Quality

The observational uncertainties associated with the dispersion-measuring algorithm

employed here were determined empirically by Ekström et al. (1997), who essentially

compared phase-anomaly measurements from nearby paths. Low-frequency seismic

observations associated with nearby paths sample approximately the same structure, and

Fig. 2 (a) Spline-knots in the parameterization of Boschi et al. (2004), and (b) this study. The top panels
show the multiple-resolution parameterization that was actually employed; the bottom panels show only the
knots of the more closely-spaced splines within the high-resolution regions
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should accordingly be approximately coincident: discrepancies can be used to estimate

measurement errors. The results of this exercise are summarized in Table 2 of Ekström

et al. (1997), as a function of period and for both Love and Rayleigh waves.

Ekström et al. (1997) note that their uncertainty estimate is ‘‘likely to be smaller than

the true uncertainty, since it does not include the effects of systematic errors, for example,

in earthquake locations.’’ The opposite could also be true, however, as, in the presence of

crustal anomalies of small spatial wavelength but large amplitude, differences between

phase-anomalies recorded at nearby paths might not reflect a measurement error, but rather

be the physically meaningful results of nonlinear effects in wave propagation.

With some preliminary experiments, we have verified that inversion of the data obtained

from the Midsea, Tomo-CH, SDS-Net and GRSN arrays and networks only provides global

phase-velocity maps consistent with those of Ekström et al. (1997), with increasing, but

surprisingly limited smearing as the distance from Europe increases. We have also men-

tioned above that the phase velocity maps we find do not change much, whether or not we

combine the data in summary ‘‘bundles’’ before inversion. These are additional indications

of the high reliability of our data.

5.2 Data Coverage: A ‘‘Checkerboard’’ Test

In a 3-D tomography exercise based on the inversion of surface-wave data, coverage is

defined not only by the density with which seismic sources and stations are distributed over

and around the region to be mapped, but also by the physics of surface-wave sensitivity to

structure at depth. In our infinite-frequency approximation, local sensitivity functions can

be defined that relate a phase-velocity estimate at a given location to the vertical profile of

shear velocity (and, to a lesser extent, density and compressional velocity) at the same

location; the form of such ‘‘Fréchet derivatives’’, or ‘‘sensitivity kernels’’, depends on the

local assumed a priori structure: the starting model (Tromp and Dahlen 1992; Boschi and

Ekström 2002). An example is shown in Fig. 3. As a general rule, waves of longer period

are sensitive to deeper structure. At any given period, the Rayleigh wave samples deeper

than the Love wave. The large width of the depth-range that surface waves are sensitive to

should immediately suggest the difficulty of accurately constraining sharp vertical changes

in Earth’s structure. The fact that this width grows with increasing period anticipates that

resolution decreases with depth, and that the transition zone is not really sampled, at this

stage, by our data.

To quantify these resolution limits, together with the less severe ones imposed by the

nonuniformity of source and station distributions, we compute the model resolution matrix

R associated with the entire database, as described by Boschi et al. (2004). What used to be

considered an impossibly expensive computation, can now be completed in a matter of

minutes on a standard desktop computer, via a Cholesky factorization (e.g., Trefethen and

Bau 1997) of AT � A ? D introduced in Eq. 13. We implement Cholesky factorization by

means of single-precision, sequential LAPACK routines. Naturally, the regularization D
imposed at this point coincides with that applied to the inversions that lead to our favoured

solution models (Sects. 6, 7). Once R is known, we can quickly dot-multiply it with any

given ‘‘input’’ model: the similarity between the result (the ‘‘output’’ model) and the input

model itself is a measure of resolution. This measure has the important drawback of

depending on our choice of the input model, so that an absolute estimate of resolution is

impossible: in earlier studies we visualized R as a whole (Boschi 2003; Boschi et al. 2004).

Here we opt for a less rigorous approach, whose results are however more easily

interpretable.
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Our input ‘‘checkerboard’’ models consist of a spherical harmonic function of selected

degree and order in the high-resolution region, and a null model over the rest of the globe.

The sign of the input model is switched at several selected depths. This model is first

projected onto a regular longitude-latitude-depth grid; the spline-coefficients correspond-

ing to our parameterization (Sect. 4) are then found via a least-squares fit implemented,

again, by Cholesky factorization. As anticipated, the output model then coincides with the

dot-product of R and the vector of spline coefficients thus found. By construction, the input

model is relatively smooth and can be represented by our parameterization.

The input model corresponding to the degree 42, order 21 normalitzed harmonic, and

changes in sign at 200 and 500 km depth, is compared in Figs. 4, 5 and 6 with the

corresponding output model.

Fig. 3 Sensitivity kernels relating Love- (left) and Rayleigh-wave (right) phase-anomaly observations
made at different periods (colors), with horizontally polarized and vertically polarized shear-velocity
heterogeneities at various upper-mantle depths (vertical axis). The data are preliminary corrected for an
assumed crustal model, and sensitivity to structure above the Moho is accordingly set to zero
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The left panels of Fig. 4 show that, at this level of complexity, the horizontal pattern of

vertically polarized shear-velocity heterogeneities dvSV is resolved well by the available

data. The change in sign of the input model at 200 km depth is also reproduced well so far

as dvSV is concerned. The input-model dvSV amplitude is reproduced accurately in the top

*200 km, but is increasingly underestimated with increasing depth.

The right panels of Fig. 4 show that the pattern of horizontally polarized shear-velocity

heterogeneities dvSH is well resolved only within the top *150 km of the mantle. At larger

depths, maps of dvSH are dominated by vertical smearing. Since dvSH is almost exclusively

constrained by Love-wave data, this effect can be ascribed to the physics of Love- versus

Fig. 4 Input (contour lines) and output (colors) models from the checkerboard test described in Sect. 2,
horizontal sections of (left) dvSV=vSV and (right) dvSH=vSH , at (top to bottom) 100, 150, 200 and 250 km
depth
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Rayleigh-wave propagation, as summarized in Fig. 3: Love-wave sensitivity kernels all

decrease monotonously with increasing depth, and are generally quite close to zero

(especially for periods of 150 s and shorter, at which most measurements were made) at

depths J150 km, where dvSH is consequently not resolved.

The vertical sections in Fig. 5 additionally show that the sharp gradient in dvSV at

200 km is well resolved; the one at 500 km is partly resolved, with some vertical smearing.

Input and output sections of dvSH in Fig. 6 are less well correlated to one another, showing

that sharp vertical gradients in dvSH cannot be resolved by our data.

5.3 The Ray-Theory Limit

The present study is an application of the algorithm of Boschi et al. (2004), which is based

on the ray-theory, infinite-frequency approximation: one can then infer a physical reso-

lution limit for the models that we derive, coinciding with (or close to) the wavelength of

the inverted seismic observations (Peter et al. 2009). At the shortest periods considered

here, the highest possible resolution should then be *200 km.

It remains unclear to what extent this limit can be outdone through the application of

finite-frequency methods (Li and Romanowicz 1996; Dahlen et al. 2000; Spetzler et al.

2001; Zhou et al. 2006). Peter et al. (2008) compared ray-theoretical and finite-frequency

tomographies based on the Rayleigh-wave component of our database. As anticipated by

Fry et al. (2008), the two approaches provide quite similar results at most frequencies; only

the 150 s phase-velocity maps derived from ray- versus finite-frequency theory differ

significantly. As a general rule, the depth range where sensitivity is highest grows with

increasing period (Fig. 3); 150 s Rayleigh waves are, e.g., mostly sensitive to structure at

*200 km depth. Shallower structure is well constrained by shorter-period observations.

We infer that, at the spatial wavelengths that we are trying to resolve, finite-frequency

effects are only an issue for relatively large depths. We expect that it will become nec-

essary to take them into account, when surface- and body-wave data are combined in

efforts to map the entire upper mantle, at increasingly high resolution.

6 First Iteration Model

We define a starting model which coincides with PREM (Dziewoński and Anderson 1981)

at depths C220 km; above this depth, all parameters vary linearly with slopes equal to

those between 400 and 220 km depth: in contrast to PREM, our starting model is entirely

isotropic and has no 220 km-discontinuity. Surface topography, crustal structure, and depth

of the Moho discontinuity change laterally as in model Crust2.0 of Bassin et al. (2000).

Boschi et al. (2004) employed this very starting model, updating the crustal portion of the

model of Boschi and Ekström (2002), who were still limited to Crust5.1 (Mooney et al.

1998).

We express phase delays in our database as anomalies with respect to the phase pre-

dicted by our starting model. For each pixel of Crust2.0, we compute the corresponding

local Love- and Rayleigh-wave sensitivity kernels Kl (r, h, u; x), introduced in Sect. 2. We

implement Eq. 10, to set up an inverse problem of the form (13) whose unknowns are the

spline coefficients of relative dvSH/vSH and dvSV/vSV heterogeneity throughout the upper

mantle. Crustal structure is left unperturbed.

We next conduct a number of least-squares inversions, implemented, again, via

Cholesky factorization of AT � A ? D. The regularization matrix D is the product of the
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identity matrix and a scalar constant (the ‘‘damping parameter’’) that we vary at each

inversion. Clearly, the strength of regularization is proportional to the scalar constant. This

regularization scheme is approximately equivalent to simple ‘‘norm damping’’ (Boschi and

Dziewoński 1999). We prefer to minimize the norm, rather than the roughness of the

solution, because our spline parameterization naturally provides relatively smooth solu-

tions, and our goal here is to resolve fine structure.

Our preferred first-iteration model (shown in Figs. 7 through 9 and hereafter dubbed

LRSP30EU1) is selected qualitatively on the basis of the L-curve criterion (Hansen

1992): models more complicated than LRSP30EU1 do not improve data-fit much, while

simpler ones quickly deteriorate it. Data-fit remains, however, approximately constant

over a relatively wide range of solutions: among those, LRSP30EU1 is the one that

appears to best recover some expected tectonic features. See, for example, a narrow fast

region underlying the western coast of Italy, partly associated with subduction at the

Calabrian arc (Fig. 8). This feature, expected on the basis of tectonic reconstructions

(Wortel and Spakman 2000; Faccenna et al. 2003; Capitanio and Goes 2006), was

mapped in other tomographic inversions, but could not be resolved by Boschi et al.

(2004) (Sect. 10).

7 Second Iteration Model

Because the sensitivity of a surface wave to local structure at depth depends on the

structure itself (e.g., Tromp and Dahlen 1992), the problem that we are solving is inher-

ently nonlinear, even within the ray-theory approximation. We accomodate the nonlin-

earity with an iterative approach, employing LRSP30EU1 as the starting model of a new

inversion (Boschi and Ekström 2002). In practice, we project LRSP30EU1 onto the 2� 9

2� pixel grid of Crust2.0, and compute, at each pixel, the Love- and Rayleigh-wave

sensitivity kernels associated with combined local crust and mantle structure. We then

implement and solve a new inverse problem, whose unknowns are dvSH=vSH and dvSV=vSV

relative to LRSP30EU1. We apply the same regularization scheme as above, and vary the

value of the damping parameter to find, again, a family of possible solutions. Perturbations

to LRSP30EU1 are generally small, and limited to the amplitude (rather than pattern) of

velocity anomalies. We select as our preferred 2nd-iteration model (LRSP30EU2 hereafter)

the one associated with the same damping-parameter value that lead to LRSP30EU1.

LRSP30EU1 and LRSP30EU2 are similar enough that we do not believe any further

iteration to be necessary.

We transform the distributions dvSH=vSH and dvSV=vSV of LRSP30EU2 to perturbations

with respect to our initial starting model, and plot them in Figs. 9 through 12. Figures 10

and 11 can be directly compared to Figs. 7 and 8, as velocity anomalies are referred to the

same model.

The mean values of vSH and vSV from LRSP30EU2 (or LRSP30EU1) as a function of

depth (Fig. 9a) confirm earlier findings by Ekström and Dziewoński (1998), Boschi and

Ekström (2002) and Boschi et al. (2004): radial anisotropy in shear velocity is similar in

magnitude to that of PREM, but extends to larger depths; no global *220 km disconti-

nuity is required by our data. In the European/Mediterranean upper mantle (Fig. 9b)

velocities are systematically higher, particularly at shallow depths, which reflects the large

thickness of continental lithosphere. Anisotropy is, again, comparable with that of PREM.

Even in this continental area, there is no requirement of a *220 km discontinuity to

explain the data.
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The global pattern of lateral variation in radial anisotropy from LRSP30EU2 (Fig. 10) is

consistent with that observed by Ekström and Dziewoński (1998), Boschi and Ekström

(2002) and Kustowski et al. (2008b), with the strongest anomaly at *150 km depth under

the Pacific, and a clear ocean-continent signature at depths \150 km.

Under Europe and the Mediterranean Basin (Fig. 11), radial anisotropy is characterized

by a complex pattern of spatial frequency higher than that of either dvSH=vSH or dvSV=vSV .

In view of the resolution analysis above (Sect. 2), it is likely that, within this region, most

of the radially anisotropic signal in our images is an artifact resulting from differences in

vSH and vSV resolution, particularly at depths C150 km. At shallower depths, the patterns of

dvSH=vSH or dvSV=vSV are qualitatively very similar: fast eastern European craton and

Aegean arc, slow western Mediterranean, Aegean sea, and Balkans. High-spatial-fre-

quency variations in anisotropy are then likely to be the fictitious effect of the different

coverage of Love- versus Rayleigh-wave data. The top *100 km of the upper mantle

underlying northern Germany, Belgium and the Netherlands are characterized by larger-

than-average anisotropy, with low vSV and high vSH. Given the dense station coverage in

the region, and the good resolution of both dvSH=vSH and dvSV=vSV in this depth range, we

believe this particular feature to be robust.

Fig. 9 Mean vSV (solid lines) and vSH (dashed) from models LRSP30EU1 (green lines) and LRSP30EU2
(red), computed (a) globally and (b) within the high-resolution region. Values of vSV and vSH within the
variable-thickness crust are not considered; mean vSV and vSH are only shown at depths that are at least
somewhere larger than the depth of the Crust2.0 Moho. vSV and vSH from PREM (black) are shown for
comparison. Our spherically symmetric, isotropic starting model of the mantle (not plotted here for
simplicity) is found by extending the 400–220 km trend of PREM vS to shallower depths, resulting in a
single straight line between 400 km and the Moho
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The closure of Tethys, and the associated convergence of the African and Eurasian

plates, have given rise to a number of episodes of subduction, documented by tectonic

reconstructions (e.g., Capitanio and Goes 2006), and confirmed, to a large extent, by

LRSP30EU2, as shown in the vertical sections of Fig. 12. Because dvSH=vSH is not well

constrained at depths [100 km, we limit the following discussion to maps of dvSV=vSV .

The presence of subducted material under the Iberian peninsula and the western

Mediterranean is expected as a result of the African plate subducting under Iberia, in the

upper to middle Tertiary, as reconstructed by Dercourt et al. (1986) (see Figs. 3, 4 in their

article) and de Jonge et al. (1994). Subduction of European lithosphere under Africa is, on

the other hand, associated with the Alpine orogen (Marchant and Stampfli 1997; Lippitsch

et al. 2003). The top-left and top-middle panels of our Fig. 12 are in qualitative agreement

with Figs. 8 and 10, respectively, in de Jonge et al. (1994). Consistent with the more recent

studies of Wortel and Spakman (2000) and Capitanio and Goes (2006), we infer from

Fig. 12 a depth extent of subducted slabs larger than that reconstructed by de Jonge et al.

(1994), both under Alps and the Iberian peninsula. Given the resolution limits of both our

studies, the high velocity anomaly that we map at depths C200 km under the Alps can be

considered in qualitative agreement with the images of Lippitsch et al. (2003).

Active subduction under the Calabrian arc, and subducted material associated with the

Apennines, map in Fig. 11 as a weak, but visible, narrow band of high velocity roughly

following the western coast of Italy. Figure 12 (bottom-left panel) shows this anomaly to

extend no deeper than *400 km into the mantle. Aegean-arc subduction, documented as a

large-scale, sharp fast feature in numerous studies (de Jonge et al. 1994; Wortel and

Spakman 2000; Piromallo and Morelli 2003; Schmid et al. 2008), is generally found to

have continued to much larger depths, possibly into the lower mantle. While our data have

little sensitivity to lower-mantle structure, the bottom panels of Fig. 12 confirm a depth

extent of *700 km for this slab. Interestingly, they also show the slab to dip almost

vertically, in contrast with tomographic maps based on body-wave data (de Jonge et al.

1994; Wortel and Spakman 2000; Piromallo and Morelli 2003; Schmid et al. 2008). This

discrepancy is most likely an effect of lack of resolution, and it is not clear which model

should be trusted: we have shown in Sect. 5 that our maps can be subject to vertical

smearing, but Fig. 9 of Piromallo and Morelli (2003) indicates that body-wave-based maps

are smeared in the same direction that their imaged slab dips to.

Possible tectonic scenarios leading to subduction under the Carpathian region are

analyzed by Fan et al. (1998). Our Fig. 11 shows a low-velocity zone under most of

Romania, down to *150 km depth. Below, and down to at least 400 km depth (Fig. 12), a

broad fast anomaly becomes dominant. This feature is geographically connected to the

broad, fast anomaly clearly associated with the eastern European craton.

8 Phase-Velocity Maps

At each reference 2� 9 2� pixel, we compute the radial integrals of the products of

dvSV=vSV and the corresponding kernels, and of the products of dvSH=vSH and the corre-

sponding kernels (Fig. 3), to determine sets of Love- and Rayleigh-wave phase velocity

maps associated with our models. Phase-velocity maps whose horizontal parameterization

coincides with that of our three-dimensional models are found. The contribution of starting

model (Crust2.0 plus a spherically symmetric mantle at the first iteration, LRSP30EU1 at

the second iteration) and heterogeneity model (LRSP30EU1 and LRSP30EU2, respec-

tively) are calculated separately and then summed. In Figs. 13 through 20, the results of

482 Surv Geophys (2009) 30:463–501

123



F
ig

.
1

2
V

er
ti

ca
l

se
ct

io
n

s
th

ro
u
g

h
th

e
dv

S
V
=
v S

V
co

m
p

o
n

en
t

o
f

m
o
d

el
L

R
S

P
30

E
U

2,
w

it
h

o
u

t
cr

u
st

al
h

et
er

o
g
en

it
ie

s
(t

h
e

cr
u
st

al
la

y
er

is
u

n
if

o
rm

ly
p

lo
tt

ed
in

g
ra

y)
.

T
h

e
g

eo
g

ra
p

h
ic

lo
ca

ti
o
n

o
f

ea
ch

se
ct

io
n

is
sh

o
w

n
o

n
a

to
p
o

g
ra

p
h
ic

m
ap

,
ab

o
v

e
th

e
se

ct
io

n
it

se
lf

.
T

h
e

co
lo

r
co

d
e

is
th

e
sa

m
e

as
in

th
e

p
re

v
io

u
s

fi
g

u
re

s,
e.

g
.

F
ig

.
7

Surv Geophys (2009) 30:463–501 483

123



F
ig

.
1

3
P

h
as

e-
v
el

o
ci

ty
h

et
er

o
g
en

ei
ty

w
it

h
re

sp
ec

t
to

P
R

E
M

v
al

u
es

fr
o

m
(t

o
p

to
b

o
tt

o
m

):
o

u
r

st
ar

ti
n

g
m

o
d

el
co

m
b

in
in

g
C

ru
st

2
.0

an
d

is
o

tr
o

p
ic

sp
h

er
ic

al
ly

-s
y

m
m

et
ri

c
u

p
p

er
m

an
tl

e;
m

an
tl

e
h

et
er

o
g
en

ei
ty

in
L

R
S

P
3

0E
U

1
;

m
o

d
el

L
R

S
P

30
E

U
1

in
cl

u
d

in
g

cr
u

st
al

st
ru

ct
u

re
fr

o
m

C
ru

st
2

.0
;

th
e

d
ir

ec
t

in
v

er
si

o
n

o
f

p
h

as
e-

an
o

m
al

y
d

at
a

fo
r

th
e

co
rr

es
p

o
n

d
in

g
m

o
d

e.
R

es
u
lt

s
fr

o
m

th
re

e
sa

m
p

le
L

o
v

e
w

av
e

fu
n

d
am

en
ta

l
m

o
d

es
ar

e
sh

o
w

n
(l

ef
t

to
ri

g
h

t)
:

3
5

s,
6

0
s

an
d

1
5

0
s

p
er

io
d

484 Surv Geophys (2009) 30:463–501

123



this exercise are compared with those of conducting at each period an independent

inversion of our phase-anomaly database, to directly find the corresponding phase-velocity

map. In the latter endeavour, we make use of a pixel parameterization analogous to that of

Boschi (2006): 3� 9 3� globally, 1� 9 1� in a high-resolution region coinciding with

Europe and the Mediterranean Basin. The inversion algorithm also coincides with that of

Boschi (2006). At the global scale, the good match between the phase velocities derived

from LRSP30EU1 and LRSP30EU2, and those found directly from the data, is a proof of

our method’s internal consistency (Boschi and Ekström 2002). Comparing Figs. 14 with

16, it can be noticed that LRSP30EU2 matches two-dimensional phase-velocity tomog-

raphy slightly better than LRSP30EU1. This is mostly a consequence of updating sensi-

tivity kernels, after the first iteration, based on LRSP30EU1: notice the difference between

the second-from-bottom, right panel of Fig. 14, and the top right panel of Fig. 16 (150 s

Rayleigh waves). The latter is characterized by more prominent slow regions corre-

sponding to rifting in western North America and eastern Africa, in agreement with the

phase-velocity tomography (bottom panels) result. A similar effect can be seen along

mid-oceanic ridges in the 60 s Rayleigh-wave maps.

At the scale of Europe and the Mediterranean basin, the correlation is not as high as

beetween the large-scalelength components of the phase-velocity maps in Figs. 13, 14, 15

and 16, but it is still high. The decorrelation or, even, anti-correlation between the phase-

velocity of 35 s Rayleigh waves as predicted by our crustal model (essentially Crust2.0)

versus both LRSP30EU1 and LRSP30EU2 is surprising. It is not necessarily fictitious, but

suggests that the accuracy of Crust2.0 in this area should be re-evaluated, and/or a higher-

resolution crustal model identified. Indeed, it can be noticed from the left panels of Fig. 18

that the mantle-only contribution to phase velocity (second from top) is better correlated

with the phase-velocity map found by direct inversion (bottom), than the phase-velocity

map derived from both crust and mantle heterogeneity (second from bottom) is. On the

other hand, Crust2.0 predicts the phase velocity of Love waves more effectively: from the

left panels of Fig. 17 it is clear that the contribution of mantle anomalies is, in that case,

much less important, and yet the directly-inverted phase velocities are reproduced well. It

also appears that having Crust2.0 as the starting model helps to reproduce the low

velocities associated with the Adriatic plate, possibly smeared in the direct phase-velocity

inversion of 35 s Love waves.

Many patterns corresponding to upper-mantle velocity anomalies are seen in the

LRSP30EU1-based phase-velocity maps shown in Figs. 17 and 18, in agreement with the

corresponding maps obtained by inverting the data directly. See in particular the fast

eastern European craton (150 s Love waves, 60 s and 150 s Rayleigh waves); fast Aegean

arc (150 s Love waves, all Rayleigh-wave periods); slow Aegean sea and western Anatolia

(at all Love- and Rayleigh-wave periods, at least to some extent); a fast anomaly under the

Alps (150 s Love and Rayleigh waves). The high correlation found by Fry et al. (2008)

between intermediate-period Rayleigh waves and heat-flow based estimates of upper-

mantle temperatures suggests that many of these features can be explained in terms of

lithospheric thickness (Sect. 10). High 35s Love-wave velocities under the Atlantic, where

the crust is very thin and surface waves therefore propagate through the faster uppermost

upper-mantle, are also reproduced well by our model.

The above considerations hold for the maps predicted on the basis of model

LRSP30EU2 (Figs. 19, 20), which are however generally characterized by heterogeneities

of larger amplitude, in agreement with the properties of LRSP30EU2 itself.
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9 Fit to the Data at Different Frequencies

To better quantify the extent to which our three-dimensional upper-mantle models explain

surface-wave phase-anomaly observations, we formally calculate the misfit between the

dispersion data we inverted, and the corresponding predictions derived from the phase-

velocity maps that we computed from LRSP30EU1 and LRSP30EU2 themselves. Based on

Eq. 5, we define misfit as

PM
m¼1

PI
i¼1 Gmixi � dUmð Þ

� �2
PM

m¼1 dU2
m

: ð14Þ

where xi (i = 1,2,…, I) denote the I = 538 (Sect. 4) coefficients of the phase-velocity

model corresponding to LRSP30EU1 or LRSP30EU2.

We implement the expression (14) for all Rayleigh- and Love-wave periods in our

database, for the phase-velocity maps derived from models LRSP30EU1 and LRSP30EU2,

and for those found by direct inversion of the phase-anomaly data at each period. The

results are shown in Fig. 21. The fit of Rayleigh-wave data achieved by LRSP30EU1 is

very low, largely as a result of the starting model not predicting those data at all (we have

verified that the mantle-only contribution to misfit is positive, as anticipated by the dis-

cussion in Sect. 8); one iteration of our procedure, improving mantle structure and the

associated sensitivity functions, brings the misfit achieved by LRSP30EU2 very close to

that of the direct phase-velocity inversions. On the contrary, the fit to Love-wave data

achieved by LRSP30EU1 is already as high as that of LRSP30EU2.

Fig. 21 Misfit, as defined by Eq. 14, to Rayleigh- (solid lines) and Love-wave (dashed lines) phase
anomalies at different periods, achieved by our models (circles) LRSP30EU1 (green lines) and LRSP30EU2
(red). The misfit achieved by phase-velocity maps found by direct inversion of the data at each surface-wave
mode is shown for comparison (triangles, blue lines). Notice that the scale on the vertical axis is logarithmic
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It is not surprising that misfit grows with increasing period: intermediate-period

(between 50 and 150 s) surface waves are sensitive to deep structure, harder to resolve;

waves at periods C200 s are more difficult to measure, and, as noted in Sect. 2, obser-

vations at those periods are consequently much less numerous. Rather, the fact that a misfit

\0.5 is achieved by LRSP30EU2 at all periods B200 s (for both Love and Rayleigh

waves) indicates that the data-weighting scheme described in Sect. 2 is appropriate.

10 Comparison with Independent Models

10.1 Global Tomography

Accurately mapping global structure is essential to avoid trade-offs between the low- and

high-resolution portions of our models, with the subsequent loss of resolution. We have

verified that our models are well correlated with the pattern of high and low shear

velocities observed in the upper mantle from independent databases. As an example, we

show in Fig. 22 how LRSP30EU2 compares at 100 km depth with model SMEAN of

Becker and Boschi (2002) and with the more recent model of Simmons et al. (2006)

(TX2007 hereafter). Because both SMEAN and TX2007 are isotropic models, derived at

least partly from body-wave data that are sensitive to both vSH and vSV, we compare them

to the Voigt average

dvS

vS
¼ 2

3

dvSV

vSV
þ 1

3

dvSH

vSH
ð15Þ

(Babuska and Cara 1991) of our vSH and vSV maps, rather than with the better constrained vSV.

The distribution of slow and fast heterogeneity in the maps of Fig. 22 has been often

explained in the framework of plate tectonics (Ekström and Dziewoński 1998) and does

not need to be discussed again. In agreement with Becker and Boschi (2002), the models

are very similar. This is remarkable if one considers that TX2007 was derived from body-

wave data only, and LRSP30EU2 only from surface-wave observations. SMEAN, like most

other global tomographic models of vS, was obtained from a combination of body-wave

and surface-wave data, including surface-wave overtones (Ritsema et al. 2004). Some

differences in the shape of anomalies (see, e.g., the ‘‘blobby’’ mid-Atlantic and Indian-

ocean ridges, and Red sea rifting area) can be ascribed to the coarser (362 free parameters)

global horizontal resolution of LRSP30EU2, equivalent to harmonic degree *18, while

SMEAN is defined up to harmonic degree 30, and TX2007 is described horizontally by

16,200 2� 9 2� pixels.

The pattern of velocity anomalies is easier to constrain than their amplitude. Of the

models of Fig. 22, LRSP30EU2 has the highest amplitude, and SMEAN the weakest, while

TX2007 is somewhere in between.

10.2 European Tomography

Even in the presence of large regional databases, structure of smaller scalelength is difficult

to image, and, as we zoom in on Europe and the Mediterranean basin (Fig. 23), this is

reflected by a loss of correlation between independent tomographic models. A careful

analysis of Fig. 23 shows, however, that many features are shared by all models: a sharp

transition from low to high velocities corresponding to the western margin of the eastern

European craton, down to *250 km depth; high velocity, at most depths, corresponding to
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the Aegean arc and the associated subduction; high velocities, again, along the Italian

peninsula and the Calabrian arc; low velocities under Sardinia, Corsica and the western

Mediterranean down to *200 km depth; low velocities under the Carpathians, central

Europe and Germany, down, again, to *200 km depth.

The models nevertheless differ in many respects. The P-wave velocity model of Piro-

mallo and Morelli (2003) is characterized, at 100–150 km depth, by a strong fast anomaly

along the Dinarides. This feature is reproduced only partially by Schmid et al. (2008), and

absent from all the other models discussed here. It remains unclear whether a similar

feature is present in the images discussed by Bijwaard et al. (1998) and Wortel and

Spakman (2000).

The model of Boschi et al. (2004) is generally slow under the Alps, where we, as well as

Peter et al. (2008), find a relatively strong fast anomaly at depths [250 km. A similar

feature, albeit somewhat displaced and extending to a wider depth range, is visible in the

models of both Piromallo and Morelli (2003) and Schmid et al. (2008). Since LRSP30EU2
and the model of Boschi et al. (2004) were otherwise derived via exactly the same

Fig. 22 Tomography dvS=vS models of Becker and Boschi (2002) (top) and Simmons et al. (2006)
(middle), compared with LRSP30EU2 (bottom) at 100 km depth

Surv Geophys (2009) 30:463–501 495

123



F
ig

.
2

3
T

o
m

o
g
ra

p
h

y
m

o
d

el
s

o
f

(l
ef

t
to

ri
gh

t)
P

ir
o

m
al

lo
an

d
M

o
re

ll
i

(2
0

0
3
),

B
o

sc
h

i
et

al
.

(2
0

0
4
),

S
ch

m
id

et
al

.
(2

0
0

8
)

an
d

P
et

er
et

al
.

(2
0

0
8
),

co
m

p
ar

ed
w

it
h

(r
ig

h
t

p
a

n
el

s)
L

R
S

P
30

E
U

2
at

(t
o

p
to

b
o

tt
o

m
)

1
0

0
k

m
,

1
5

0
k

m
,

2
5

0
k

m
,

3
0

0
k

m
,

an
d
*

4
0

0
k

m
d

ep
th

.
O

n
ly

th
e

dv
S

V
=
v S

V
co

m
p

o
n

en
t

o
f

L
R

S
P

30
E

U
2

an
d

o
f

th
e

ra
d

ia
ll

y
an

is
o

tr
o

p
ic

m
o
d

el
o

f
B

o
sc

h
i

et
al

.
(2

0
0

4
)

is
sh

o
w

n

496 Surv Geophys (2009) 30:463–501

123



algorithm, it is likely that this discrepancy be caused by the refined data coverage and

parameterization of LRSP30EU2, which should then be considered more reliable.

LRSP30EU2 and the model of Boschi et al. (2004) also differ under the western

Mediterranean down to 150 km depth, where the latter’s uniformly slow character is

replaced by a more heterogeneous map, with slow maxima under Sardinia, Corsica and the

eastern coast of Spain. Complicated patterns of heterogeneity are also found, in this area,

by Piromallo and Morelli (2003), Schmid et al. (2008) and Peter et al. (2008).

The vSV model of Peter et al. (2008), derived from the same Rayleigh-wave data as ours,

nevertheless differs significantly from LRSP30EU2. To a closer look, it appears that the

total amount of slow and fast anomalies approximately coincides, at each geographic

location, with that of LRSP30EU2; but their vertical distribution is quite different. Peter

et al. (2008) first derived a set of Rayleigh-wave phase-velocity maps (hence, many sets of

Rayleigh-wave dispersion curves) by direct inversion, similar to those of Figs. 17, 18, 19

and 20 (bottom panels). In a second step they found, for each pixel of those maps, a vertical

profile of vSV that explained the corresponding dispersion curve. This second inversion was

conducted by means of a non-linear, ‘‘Monte-Carlo’’-type algorithm, that could hardly

discriminate between a wide range of possible solutions. The linear approach that we

followed here, deriving dvSH/vSH and dvSV=vSV directly from phase-delay data, through a

single least-squares inversion, seems to provide a more stable solution, not exceedingly

sensitive to, e.g., regularization.

On the other hand, the model of Peter et al. (2008) is based on a finite-frequency

approach, theoretically more accurate than the ray-theoretical one applied here. Differ-

ences in the structure mapped by the two models under the Italian peninsula (250–300 km

depth) can be associated to the differences in finite-frequency and ray-theoretical maps of

150s Rayleigh-wave velocities noted by Fry et al. (2008) and Peter et al. (2008)

themselves.

10.3 Lithospheric Thickness

The existence of significant correlation between estimates of seismic velocity, lithospheric

thickness and lithospheric strength or Te (‘‘effective elastic thickness’’) under Europe was

first pointed out by Pérez-Gussinyé and Watts (2005), who compared the vS model of

Boschi et al. (2004) with a map of thermal thickness of the lithosphere from Artemieva and

Mooney (2001), and with their own maps of Te. After updating the seismic database of

Boschi et al. (2004) as described in Sect. 2 above, Fry et al. (2008) also found a high

correlation between the corresponding Rayleigh-wave phase-velocity maps at intermediate

periods (*60 s), and a map of thermal thickness, defined as the depth to the 1300�C

isotherm, from model TC1 of Artemieva (2006). The latter map is shown in Fig. 24,

together with the Bouguer-coherence-based map of Te from Pérez-Gussinyé and Watts

(2005), and (following Pérez-Gussinyé and Watts 2005) the Voigt average of our model

LRSP30EU2 at 100 km depth. Over the area where estimates of both Te and thermal

thickness are available, the three observables are all correlated with one another. The

eastern European craton is a distinct feature of all three maps, corresponding to strong

(high Te) and thick lithosphere, and high vS. Correlation between vS and thermal thickness

is highest in central and Southern Europe, with the strongest low-vS anomalies clearly

associated with areas of thin lithosphere under western Anatolia, the Carpathians, Corsica

and Sardinia, and an important high-vS anomaly corresponding to thick thermal lithosphere

along the southern coast of the Balkans. These features only partially match the pattern of

low and high Te, partly as a result of the short scalelength of the features themselves (Kirby
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et al. 2008; Pérez-Gussinyé et al. 2009). In northern Europe, correlation between vS and Te

is higher than that between vS and thermal thickness; see, in particular, the high vS anomaly

extending from the eastern European craton to England and northern France, a region of

consistently higher Te, but low thermal thickness. Interestingly, this is also the area where

we find the highest and most robust anomaly in radial anisotropy within Europe (Sect. 7

and Fig. 10).

11 Summary

We have taken advantage of a newly compiled database of fundamental-mode surface-

wave phase anomalies, based on recordings made by seismic networks in Europe and

Fig. 24 Lithospheric strength, or Te (top), from Fig. 1a of Pérez-Gussinyé and Watts (2005); (middle)
thermal thickness of the lithosphere from model TC1 of Artemieva (2006); (bottom) Voigt average dvS=vS

from LRSP30EU2
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around the Mediterranean basin, to identify a new model of upper-mantle, horizontally and

vertically polarized shear velocity in the region.

This study is, to a large extent, an update of that of Boschi et al. (2004), with a much

denser data coverage (Sect. 2) and appropriately finer parameterization (Sect. 4). We have

shown in Sect. 10 and Fig. 23 how finer structure is accordingly resolved. Important

improvements with respect to the model of Boschi et al. (2004) include the identification

of a fast anomaly to the south-west of Italy that could be associated with the Calabrian arc,

and of another fast anomaly at relatively large depth under the Alps, possibly corre-

sponding to past subduction in the region (Sect. 7). The western Mediterranean upper

mantle is characterized, at shallower depths, by a more complex low-velocity distribution

than that mapped by Boschi et al. (2004), and in better agreement with other studies.

With respect to Boschi et al. (2004), we also provide a more intuitive illustration of

resolution (Sect. 5), we quantify the (small) improvement in our model after one iteration

of the inversion procedure, we derive (following Boschi and Ekström 2002) phase-velocity

maps based on the crustal and upper-mantle heterogeneity in our models, and analyze those

two contributions separately (Sect. 8).

The latter exercise shows that Crust2.0 matches our Love-wave dispersion observations,

but does not contribute to explaining the Rayleigh-wave ones, even at the shortest periods

considered here. Under the assumption that the measurement technique of Ekström et al.

(1997), applied here, is accurate, this suggests that in the future we should partly replace

our global Crust-2.0-based reference model with a higher-resolution, regional one, derived

either from the compilation of local studies (Tesauro et al. 2008), or from the inversion of

ambient-noise data (Stehly et al. 2009).

Planned collaborative work leading to a consensus model of the European and Medi-

terranean upper mantle involves, most importantly, the compilation and tomographic

inversion of a richer database, including surface-wave overteone (Lebedev and van der

Hilst 2008), body-wave (Amaru et al. 2008) and ambient-noise observations (Stehly et al.

2009). In this endeavour, finite-frequency effects in wave propagation, neglected here, will

ultimately have to be taken into account (Dahlen et al. 2000; Zhou et al. 2006; Fry et al.

2008; Peter et al. 2008). With this study we have proven the effectiveness of fundamental-

mode surface-wave data, and of our multiple-resolution algorithm, at resolving the inter-

mediate-scalelength distribution of regional upper-mantle heterogeneity.
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Fry B, Boschi L, Ekström G, Giardini D (2008) Europe-Mediterranean tomography: high correlation

between new seismic data and independent geophysical observables. Geophys Res Lett 35:L04301.
doi:10.1029/2007GL031519

Hansen PC (1992) Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev 34:561–580
Henger M, Berckhemer H, Seidl D (2002) The history of the development of the German Regional Seismic

Network. In Korn M (ed) Ten years of German Regional Seismic Network (GRSN). Report 25 of the
Senate Commission for Geoscience (DFG), Wiley-VCH, Weinheim, Germany, pp 1–8

Kirby JF, Swain CJ (2008) An accuracy assessment of the fan wavelet method for elastic thickness esti-
mation. Geochem Geophys Geosyst 9:Q03022. doi:10.1029/2007GC001773
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