124 research outputs found

    Various forms of double burden of malnutrition problems exist in rural Kenya

    Get PDF
    Background: The coexistence of overweight/obesity and undernutrition is often referred to as the double burden of malnutrition (DB). DB was shown to exist in many developing countries, especially in urban areas. Much less is known about DB in rural areas of developing countries. Also, the exact definition of DB varies between studies, making comparison difficult. The objective of this study is to analyse DB problems in rural Kenya, using and comparing different DB definitions and measurement approaches. Methods: Food intake and anthropometric data were collected from 874 male and female adults and 184 children (<5 years) through a cross-section survey in rural areas of Western Kenya. DB at the individual level is defined as a person suffering simultaneously from overweight/obesity and micronutrient deficiency or stunting. DB at the household level is defined as an overweight/obese adult and an undernourished child living in the same household, using underweight, stunting, wasting, and micronutrient deficiency as indicators of child undernutrition. Results: DB at the individual level is found in 19% of the adults, but only in 1% of the children. DB at the household level is relatively low (1–3%) when using wasting or underweight as indicators of child undernutrition, but much higher (13–17%) when using stunting or micronutrient deficiency as indicators. Conclusion: Various forms of DB problems exist in rural Kenya at household and individual levels. Prevalence rates depend on how exactly DB is defined and measured. The rise of overweight and obesity, even in rural areas, and their coexistence with different forms of undernutrition are challenges for food and nutrition policies

    Regulation of renin gene expression in kidneys of eNOS- and nNOS-deficient mice

    Full text link
    Our study aimed to assess the roles of nitric oxide derived from endothelium NO-synthase (eNOS) and macula densa neuronal NO-synthase (nNOS) in the regulation of renal renin expression. For this purpose renin mRNA levels and renin content were determined in kidneys of wild-type (wt), nNOS-deficient (nNOS–/–), and eNOS-deficient (eNOS–/–) mice, in which the renin system was suppressed by feeding a high-salt diet (NaCl 4%), or was stimulated by feeding a low-salt (NaCl 0.02%) diet together with the converting-enzyme inhibitor ramipril (10 mg kg –1 day –1 ). In all mouse strains, renin mRNA levels were inversely related to the rate of sodium intake. In eNOS–/– mice renin mRNA levels and renal renin content were 50% lower than in wt mice at each level of salt intake, whilst in nNOS–/– mice renin expression was not different from wt controls. Administration of the general NO-synthase inhibitor nitro- l -arginine methyl ester ( l -NAME, 50 mg kg –1 day –1 ) to mice kept on the low-salt/ramipril regimen caused a decrease of renal renin mRNA levels in wt and nNOS–/– mice, but not in eNOS–/– mice. These observations suggest that neither eNOS nor nNOS is essential for up- or downregulation of renin expression. eNOS-derived NO appears to enhance renin expression, whereas nNOS-derived NO does not.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42244/1/424-439-5-567_s004249900214.pd

    Endogenous myoglobin expression in mouse models of mammary carcinoma reduces hypoxia and metastasis in PyMT mice

    Full text link
    Myoglobin (MB) is expressed in different cancer types and may act as a tumor suppressor in breast cancer. The mechanisms by which basal MB expression level impacts murine mammary tumorigenesis are unclear. We investigated how MB expression in breast cancer influences proliferation, metastasis, tumor hypoxia, and chemotherapy treatment in vivo. We crossed PyMT and WapCreTrp53flox^{flox} mammary cancer mouse models that differed in tumor grade/type and onset of mammary carcinoma with MB knockout mice. The loss of MB in WapCre;Trp53flox^{flox} mice did not affect tumor development and progression. On the other hand, loss of MB decreased tumor growth and increased tissue hypoxia as well as the number of lung metastases in PyMT mice. Furthermore, Doxorubicin therapy prevented the stronger metastatic propensity of MB-deficient tumors in PyMT mice. This suggests that, although MB expression predicts improved prognosis in breast cancer patients, MB-deficient tumors may still respond well to first-line therapies. We propose that determining the expression level of MB in malignant breast cancer biopsies will improve tumor stratification, outcome prediction, and personalized therapy in cancer patients

    Formation of a stable deacagonal quasicrystalline Al-Pd-Mn surface layer

    Get PDF
    We report the in situ formation of an ordered equilibrium decagonal Al-Pd-Mn quasicrystal overlayer on the 5-fold symmetric surface of an icosahedral Al-Pd-Mn monograin. The decagonal structure of the epilayer is evidenced by x-ray photoelectron diffraction, low-energy electron diffraction and electron backscatter diffraction. This overlayer is also characterized by a reduced density of states near the Fermi edge as expected for quasicrystals. This is the first time that a millimeter-size surface of the stable decagonal Al-Pd-Mn is obtained, studied and compared to its icosahedral counterpart.Comment: Submitted to Phys. Ref. Lett. (18 July 2001

    Odorant-Dependent Generation of Nitric Oxide in Mammalian Olfactory Sensory Neurons

    Get PDF
    The gaseous signalling molecule nitric oxide (NO) is involved in various physiological processes including regulation of blood pressure, immunocytotoxicity and neurotransmission. In the mammalian olfactory bulb (OB), NO plays a role in the formation of olfactory memory evoked by pheromones as well as conventional odorants. While NO generated by the neuronal isoform of NO synthase (nNOS) regulates neurogenesis in the olfactory epithelium, NO has not been implicated in olfactory signal transduction. We now show the expression and function of the endothelial isoform of NO synthase (eNOS) in mature olfactory sensory neurons (OSNs) of adult mice. Using NO-sensitive micro electrodes, we show that stimulation liberates NO from isolated wild-type OSNs, but not from OSNs of eNOS deficient mice. Integrated electrophysiological recordings (electro-olfactograms or EOGs) from the olfactory epithelium of these mice show that NO plays a significant role in modulating adaptation. Evidence for the presence of eNOS in mature mammalian OSNs and its involvement in odorant adaptation implicates NO as an important new element involved in olfactory signal transduction. As a diffusible messenger, NO could also have additional functions related to cross adaptation, regeneration, and maintenance of MOE homeostasis

    OXPHOS Supercomplexes as a Hallmark of the Mitochondrial Phenotype of Adipogenic Differentiated Human MSCs

    Get PDF
    Mitochondria are essential organelles with multiple functions, especially in energy metabolism. Recently, an increasing number of data has highlighted the role of mitochondria for cellular differentiation processes. Metabolic differences between stem cells and mature derivatives require an adaptation of mitochondrial function during differentiation. In this study we investigated alterations of the mitochondrial phenotype of human mesenchymal stem cells undergoing adipogenic differentiation. Maturation of adipocytes is accompanied by mitochondrial biogenesis and an increase of oxidative metabolism. Adaptation of the mt phenotype during differentiation is reflected by changes in the distribution of the mitochondrial network as well as marked alterations of gene expression and organization of the oxidative phosphorylation system (OXPHOS). Distinct differences in the supramolecular organization forms of cytochrome c oxidase (COX) were detected using 2D blue native (BN)-PAGE analysis. Most remarkably we observed a significant increase in the abundance of OXPHOS supercomplexes in mitochondria, emphasizing the change of the mitochondrial phenotype during adipogenic differentiation

    Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity

    Get PDF
    Abstract : Background: Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. Results: Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a “homeodynamic” manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. Conclusions: Our results support the “homeostatic plasticity concept” giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons

    Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back

    Get PDF
    The role of intrinsic cortical dynamics is a debatable issue. A recent optical imaging study (Kenet et al., 2003) found that activity patterns similar to orientation maps (OMs), emerge in the primary visual cortex (V1) even in the absence of sensory input, suggesting an intrinsic mechanism of OM activation. To better understand these results and shed light on the intrinsic V1 processing, we suggest a neural network model in which OMs are encoded by the intrinsic lateral connections. The proposed connectivity pattern depends on the preferred orientation and, unlike previous models, on the degree of orientation selectivity of the interconnected neurons. We prove that the network has a ring attractor composed of an approximated version of the OMs. Consequently, OMs emerge spontaneously when the network is presented with an unstructured noisy input. Simulations show that the model can be applied to experimental data and generate realistic OMs. We study a variation of the model with spatially restricted connections, and show that it gives rise to states composed of several OMs. We hypothesize that these states can represent local properties of the visual scene
    corecore